BUBIRMINGHAM

Addressing the Proposed PFAS Rule at BWW ADEM Surface Water Meeting

BWW October 2023

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

3. Planning and Monitoring Considerations at BWW

4. Treatment Options and Considerations

5. Potential Cost of Treatment

6. Proactive Preparation Steps for Utilities

© Arcadis 2023

2

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

3. Planning and Monitoring Considerations at BWW

4. Treatment Options and Considerations

5. Potential Cost of Treatment

6. Proactive Preparation Steps for Utilities

EPA's Proposed PFAS Rule Requirements for Public Water Systems

1. Monitor for these PFAS;

- Initial monitoring must be completed in the three years between the rule promulgation date (anticipated end of 2023) and the rule effective date (anticipated end of 2026).
- Initial monitoring results will determine the ongoing compliance monitoring requirements.
- 2. Treat to reduce the levels of these PFAS in drinking water if they exceed the proposed standards regulatory standards.
 - Through treatment to remove PFAS
 - Switching to alternative water supply that meets standards

3. Notify the public of the levels of these PFAS

- If the levels of regulated PFAS exceed the proposed MCL, EPA is proposing a "Tier 2" notification be issued:
 - This would require notice as soon as possible, but within 30 days of the violation to public
- Through annual Consumer Confidence Reports (CCRs)

EPA's Proposed PFAS Rule Requirements for Public Water Systems

- 1. EPA is proposing Maximum Contaminant Levels (MCLs), for six PFAS in drinking water.
 - PFOA and PFOS as individual contaminants, and
 - PFHxS, PFNA, PFBS, and HFPO-DA (commonly referred to as GenX Chemicals) as a PFAS mixture
- 2. EPA is also proposing health-based, non-enforceable Maximum Contaminant Level Goals (MCLGs) for these six PFAS.
 - MCLGs are the maximum level of a contaminant in drinking water where there are

no known or anticipated negative health effects allowing for a margin of safety

EPA's Proposed MCLs for PFAS

Compound	Proposed MCLG	Proposed MCL (enforceable levels)
PFOA	0 ppt*	4.0 ppt*
PFOS	0 ppt*	4.0 ppt*
PFNA		
PFHxS	1.0 (unitless)	1.0 (unitless)
PFBS	Hazard Index	Hazard Index
HFPO-DA (commonly referred to as GenX Chemicals)		

The Hazard Index is a tool used to evaluate potential health risks from exposure to chemical mixtures.

*ppt = parts per trillion (also expressed as ng/L)

Additional PFAS Requirements Related to UCMR 5

• Who is required to conduct UCMR 5 sampling?

Size Category (Number of People Served)	Monitoring Design (CWSs and NTNCWSs) ²	Total # of Systems per Size Category		
Small Systems ¹ (fewer than 3,300)	Nationally representative sample	800		
Small Systems ¹ (3,300-10,000)	All systems, if confirmed by EPA	5,147 ³		
Large Systems (10,001 and over)	All systems	4,364 ³		
Total	•	10,311		

1. This requirement is based on the availability of appropriations and sufficient laboratory capacity

2. Community Water Systems (CWSs), Non-Transient Non-Community Water Systems (NTNCWSs)

3. Counts are approximate

- Samples will be collected at each entry point to the distribution system (EPTDS).
- Timeline:
 - The 5-year UCMR 5 cycle spans 2022 2026, with preparations in 2022, sample collection from 2023 2025, and completion of data reporting in 2026.

© Arcadis 2023

27 October 2023

7

UCMR 5 - Full List of Compounds, Minimum Reporting Levels (MRLs), EPA Methods

	Contaminant	UCMR5 MRL	Units	Method ID	
in Proposed	9Cl-PF3ONS	0.002	µg∕L	EPA 533	
NPDWR	PFMPA	0.004	µg∕L	EPA 533	
	8:2 FTS	0.005	µg∕L	EPA 533	
	PFHpA*	0.003	µg∕L	EPA 533	
	PFOA*	0.004	<mark>µg∕L</mark>	EPA 533	
	PFDA	0.003	µg∕L	EPA 533	
	PFTA	0.008	µg∕L	EPA 537.1	
	PFPeS	0.004	µg∕L	EPA 533	
	PFDoA	0.003	µg∕L	EPA 533	
	PFOS*	<mark>0.004</mark>	<mark>µg∕L</mark>	EPA 533	
	PFMBA	0.003	µg∕L	EPA 533	
	PFNA*	<mark>0.004</mark>	<mark>µg∕L</mark>	EPA 533	
	PFPeA	0.003	µg∕L	EPA 533	
	PFHxA	0.003	µg∕L	EPA 533	
	NMeFOSAA	0.006	µg∕L	EPA 537.1	

Included in Propos
 PFAS NPDWR

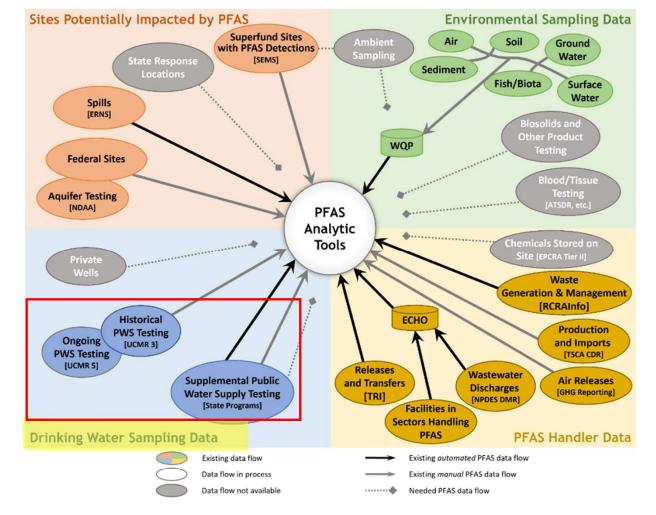
* = UCMR 3

UCMR 5 - Full List of Compounds, Minimum Reporting Levels (MRLs), EPA Methods (cont.)

	Contaminant	UCMR5 MRL	Units	Method ID	
Included in Proposed	4:2 FTS	0.003	μg∕L	EPA 533	
PFAS NPDWR	PFEESA	0.003	µg∕L	EPA 533	
UCMR 3	6:2 FTS	0.005	µg∕L	EPA 533	
OCIVIN 3	PFBS*	<mark>0.003</mark>	<mark>µg∕L</mark>	EPA 533	
	PFUnA	0.002	µg∕L	EPA 533	
	NEtFOSAA	0.005	µg/L	EPA 537.1	
	PFTrDA	0.007	μg∕L	EPA 537.1	
	PFHxS*	<mark>0.003</mark>	<mark>µg∕L</mark>	EPA 533	
	ADONA	0.003	µg∕L	EPA 533	
	PFBA	0.005	µg∕L	EPA 533	
	lithium	9	µg∕L	EPA 200.7	
	PFHpS	0.003	µg∕L	EPA 533	
	HFPO-DA (GenX)	<mark>0.005</mark>	<mark>µg∕L</mark>	EPA 533	
	11Cl-PF3OUdS	0.005	µg∕L	EPA 533	
	NFDHA	0.02	µg∕L	EPA 533	

= UCMR 3

=


EPA PFAS Analytic Tools – Data Inputs

Source: https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.html

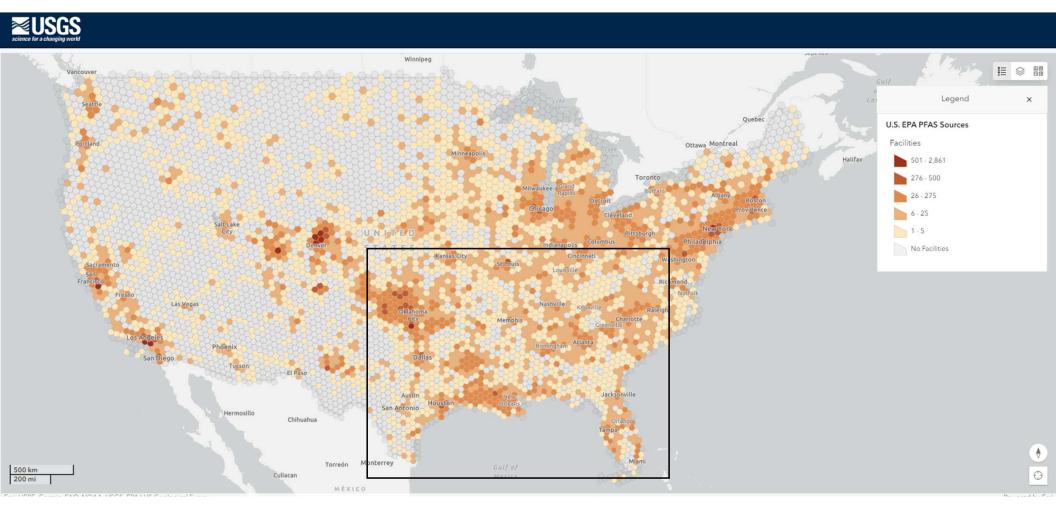
Drinking Water Sampling Data

- 1. UCMR 3
- 2. Supplemental Public Water Supply testing (State Programs)
- 3. UCMR 5*

* Ongoing and integrated incrementally

BUBIRMINGHAM WATER WORKS

Presentation Agenda

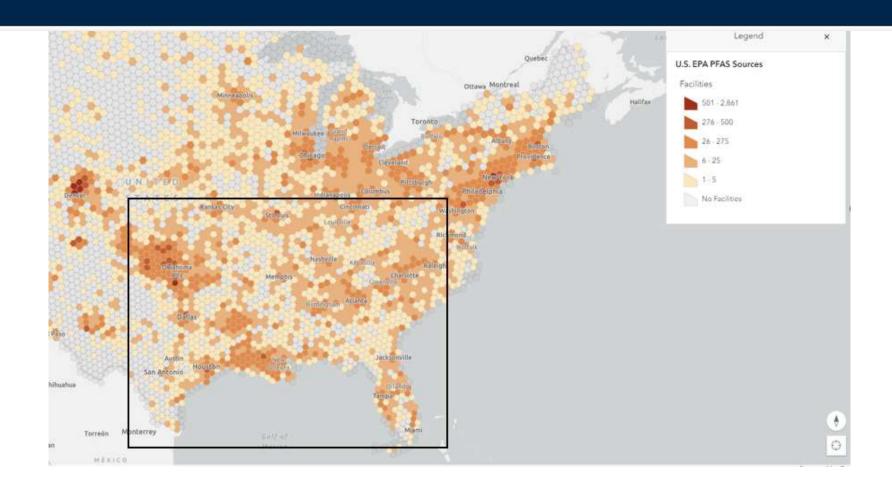

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

- 3. Planning and Monitoring Considerations at BWW
- 4. Treatment Options and Considerations
- 5. Potential Cost of Treatment
- 6. Proactive Preparation Steps for Utilities

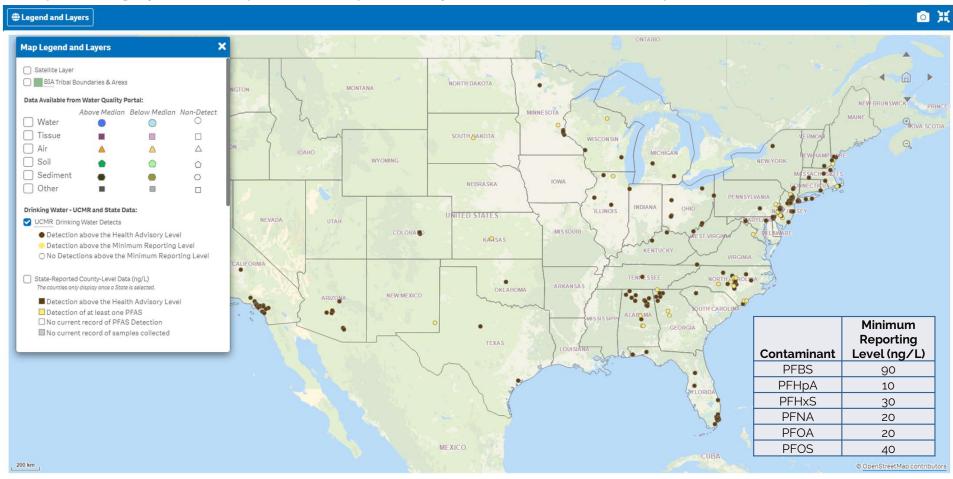
US EPA PFAS Sources- Count of Facilities by State

Source: PFAS in US Tap water Interactive Dashboard (usgs.gov)


BUBIRMINGHAM

US EPA PFAS Sources- Count of Facilities by State

Source: PFAS in US Tap water Interactive Dashboard (usgs.gov)



UCMR 3 Drinking Water Detects Across US

BIIBIRMINGHAM **WATER WORKS**

Source: <u>https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.html</u>

UCMR3 required all large systems and a representative sample of small systems to monitor for six PFAS compounds.

What about UCMR 5?

• From UCMR 3 to UCMR 5, MRLs for PFAS compounds have reduced 3-30x, depending on the species

Contaminant under UCMR 3	UCMR 3 Minimum Reporting Level (ng/L)	Interim/Final HALs (ppt, ng/L)*	UCMR 5 Minimum Reporting Level (ng/L)
PFBS	90	Final: 2000 ppt	3
PFHpA	10		3
PFHxS	30		3
PFNA	20		4
PFOA	20	Interim: 0.004 ppt	4
PFOS	40	Interim: 0.02 ppt	4
Gen X*		Final: 10 ppt	5

*Final HAL exists for GenX (HFPO-DA) at a level of 10 ppt, but GenX was not part of the UCMR 3 assessment. GenX is included in the current UCMR 5 endeavor.

© Arcadis 2023

27 October 2023

UCMR 5 - Full List of Compounds, Minimum Reporting Levels (MRLs), EPA Methods

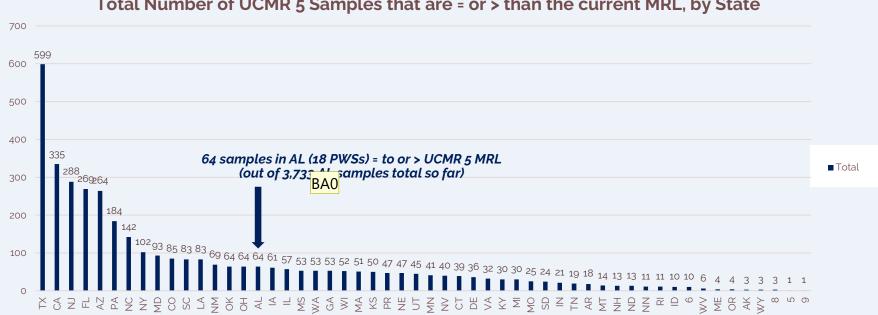
	Contaminant	UCMR5 MRL	Units	Method ID	
in Proposed	9Cl-PF3ONS	0.002	µg∕L	EPA 533	
NPDWR	PFMPA	0.004	µg∕L	EPA 533	
	8:2 FTS	0.005	µg∕L	EPA 533	
	PFHpA*	0.003	µg∕L	EPA 533	
	PFOA*	<mark>0.004</mark>	<mark>µg∕L</mark>	EPA 533	
	PFDA	0.003	µg∕L	EPA 533	
	PFTA	0.008	µg∕L	EPA 537.1	
	PFPeS	0.004	µg∕L	EPA 533	
	PFDoA	0.003	µg∕L	EPA 533	
	PFOS*	<mark>0.004</mark>	<mark>µg∕L</mark>	EPA 533	
	PFMBA	0.003	µg∕L	EPA 533	
	PFNA*	<mark>0.004</mark>	<mark>µg∕L</mark>	EPA 533	
	PFPeA	0.003	µg∕L	EPA 533	
	PFHxA	0.003	µg∕L	EPA 533	
	NMeFOSAA	0.006	µg∕L	EPA 537.1	

Included in Propos
 PFAS NPDWR

* = UCMR 3

UCMR 5 - Full List of Compounds, Minimum Reporting Levels (MRLs), EPA Methods (cont.)

	Contaminant	UCMR5 MRL	Units	Method ID	
Included in Proposed	4:2 FTS	0.003	μg∕L	EPA 533	
PFAS NPDWR	PFEESA	0.003	µg∕L	EPA 533	
UCMR 3	6:2 FTS	0.005	µg∕L	EPA 533	
OCIVIN 3	PFBS*	<mark>0.003</mark>	<mark>µg∕L</mark>	EPA 533	
	PFUnA	0.002	µg∕L	EPA 533	
	NEtFOSAA	0.005	µg/L	EPA 537.1	
	PFTrDA	0.007	μg∕L	EPA 537.1	
	PFHxS*	<mark>0.003</mark>	<mark>µg∕L</mark>	EPA 533	
	ADONA	0.003	µg∕L	EPA 533	
	PFBA	0.005	µg∕L	EPA 533	
	lithium	9	µg∕L	EPA 200.7	
	PFHpS	0.003	µg∕L	EPA 533	
	HFPO-DA (GenX)	<mark>0.005</mark>	<mark>µg∕L</mark>	EPA 533	
	11Cl-PF3OUdS	0.005	µg∕L	EPA 533	
	NFDHA	0.02	µg∕L	EPA 533	


= UCMR 3

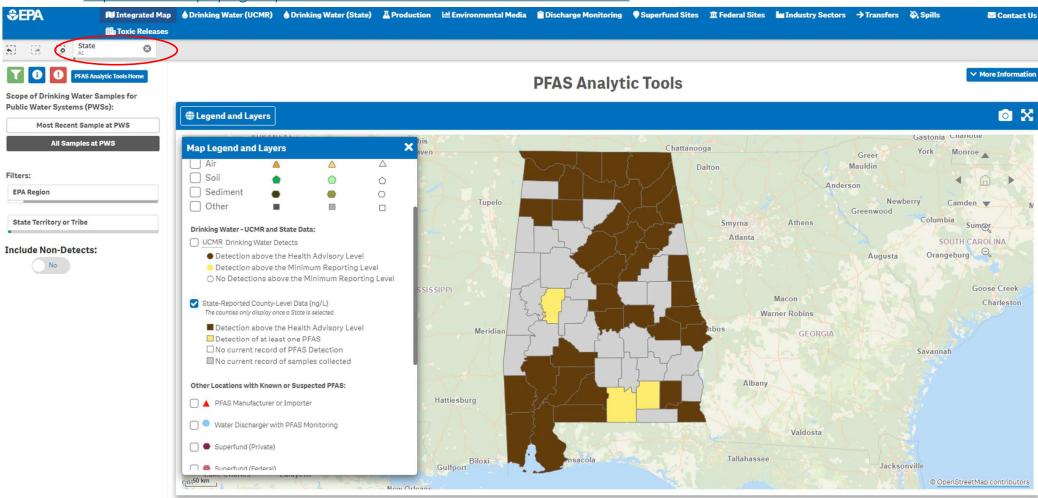
=

UCMR 5 To date -AL tied for 13th highest, based on 7% of UCMR 5 data received

Source: Occurrence Data from the Unregulated Contaminant Monitoring Rule | US EPA

Total Number of UCMR 5 Samples that are = or > than the current MRL, by State

This data release represents approximately 7% of the total results that EPA expects to receive. Occurrence data will be updated on a quarterly basis until completion of data reporting in 2026. Data are added and possibly removed or updated over the course of this reporting cycle following further review by analytical laboratories, public water systems (PWSs), states, and EPA.


How many utilties within this 64* BA0

What percentage of overall samples by AL are within the 64 Beciragic, Alma, 2023-10-10T15:35:25.699

State-Reported County-Level PFAS Data - AL

BUBIRMINGHAM

Source: https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.html

Supplemental Public Water Supply PFAS Monitoring

Source: <u>https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.html</u>

	ated Map Sprinking Water (UCMR	Character (Drinking Water (State) A Product	ion 네 Environmental Media	Discharge Monitoring	Superfund Sites	Trederal Sites	Industry Sectors	→ Transfers	🗹 Contact Us
Si Co State AL	Toxic Releases									
PFAS Analytic Tools Hot	Summary T	able								
Scope of Drinking Water Samples for Public Water Systems (PWSs): Most Recent Sample at PWS	Contamina	Q. PWSs	Results	PWSs with Detections						
All Samples at PWS	Totals	127	835	127						
	PFOS	91	210	91	Abo	out the Da	itaset:			
Filtore	PFBS	64	150	64		• 835 sc	amples in	AL, across 1	.27 PWSs	
Decent (state	PFOA	64	134	64			om 0.2 – 210 ng/L			
Recent (state	PFHXA	54	114	54	 Data representing 2020 – 2022 Most samples measured via EPA Metho 					C
reported) data	PFHXS	50	103	50						
suggests more	PFHPA	31	63	31			tors 18 PF			00,1
frequent detection	PFNA PFNA	6	9	6				,		
	PFDA	6	8	6						
affecting greater	# PFDOA	5	6	5	Kov	Points:				
of PWSs.	PFTRDA	5	6	5	5 • 127 PWSs in AL	in the data	be detect			
	PFUNA	5	6	5						
	NETFOSAA	5	5	5		0		detected P		
	11CL-PF30	UDS 4	5	4		-	had PFOS concentrations			
As MRLs decreas	IIII O DA	4	5	4			-		'Ss had PFOS	5
the frequency o	MMEFOSAA	4	4	4			concentro	itions <u>></u> 4.1 ng	g/L.	
detections is likely	to 9CL-PF3ON	S 3	3	3						
increase	ADONA	2	2	2						
Increase	PFTA	2	2	2						

Time is of the Essence

- Tightening Regulations
- Short Implementation Timeframe
- Need to Assess Treatability

PFAS Drinking Water Regulatory Timeline

- **2013 - 2015** UCMR 3 monitoring for 6 PFAS -• May 2016 Health Advisory (HA) for PFOA and PFOS set at a combined 70 ng/L • October 2021 USEPA Strategic Roadmap released - June 2022 Four drinking water PFAS HAs issued, including much lower levels for PFOA and PFOS and new HAs for PFBS and GenX • March 2023 Proposed National Primary Drinking Water Regulations (NPDWRs) for six PFAS species (PFOA, PFOS, PFNA, PFHxS, PFBS, and GenX) Present December 2023 (Expected) Final NPDWRs for six PFAS -• 2023 - 2025 UCMR 5 monitoring for 29 PFAS

BUBIRMINGHAM WATER WORKS

-⊙ 2023 - 2026

Initial Monitoring for the proposed PFAS NPDWR must be completed between the rule promulgation and the rule effective date

- **2023 (Expected)**

Final designation of PFOA and PFOS as "hazardous substances under CERCLA"

- **2025 (Expected)**

Listing PFOA, PFOS, PFBS, and GenX as "hazardous substances under RCRA"

December 2026 (Expected)

PFAS NPDWR Effective Date (3 years following rule promulgation)

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

3. Planning and Monitoring Considerations at BWW

4. Treatment Options and Considerations

5. Potential Cost of Treatment

6. Proactive Preparation Steps for Utilities

Planning and Monitoring Considerations

1) Start Early!

- Tightening Regulations & Demanding Timelines
- Public Perception

2) Consider PFAS monitoring at a higher frequency than required by UCMR 5

- More granular data
- Better able to understand seasonal and weather variations

3) Define PFAS Concentration Targets and Safety Factors

• EPA has requested comment on establishing the proposed rule trigger levels at 1/3 of the proposed MCLs vs. alternative trigger levels such as 1/2 of the proposed MCLs

4) Monitor source waters throughout relevant watersheds

- Understand fluctuations in source waters
- Be Proactive: Work toward identifying PFAS sources throughout watersheds

BUBIRMINGHAM

BWW's Ongoing Monitoring Plan and Compliance Roadmap

Workstream 1: Strategic Finished & Raw Water Sampling

Workstream 2: Source Water Assessment

Workstream 3: Data Characterization & Visualization

Workstream 4: Treatability Assessments

BWW's Ongoing Monitoring Plan and Compliance Roadmap

Workstream 1: Strategic Finished & Raw Water Sampling

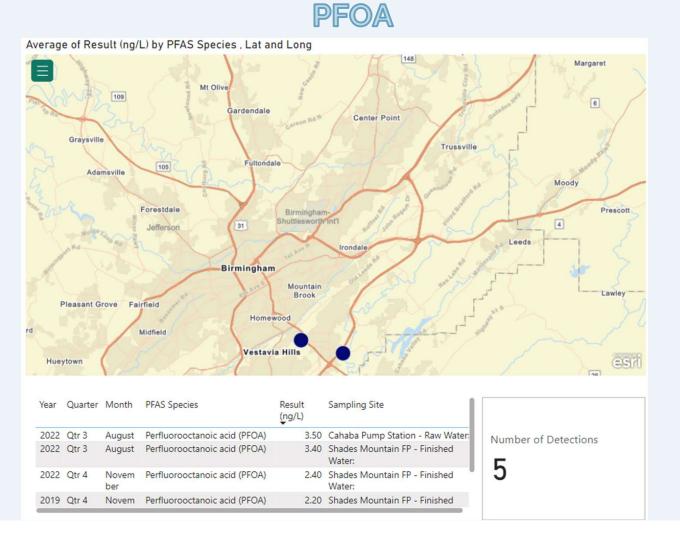
- ADEM requiring quarterly monitoring at 1 filter plant
- Finished at all four filter plants
- Raw at all four intakes
- Monthly sampling for 3 months. If ND for all species, consider monitoring that site quarterly
- Researching possible contributions of treatment processes, and exploring PFAS in solids

Workstream 2: Source Water Assessment

- Start profiling priority watersheds that have prior indications of PFAS presence
 - Cahaba River: 4 Sites in the watershed monitored monthly
- Continue to refine sampling locations & frequency to identify PFAS sources
- Review publicly available data on PFAS sources, users, NPDES permits

> Workstream 3: Data Characterization & Visualization

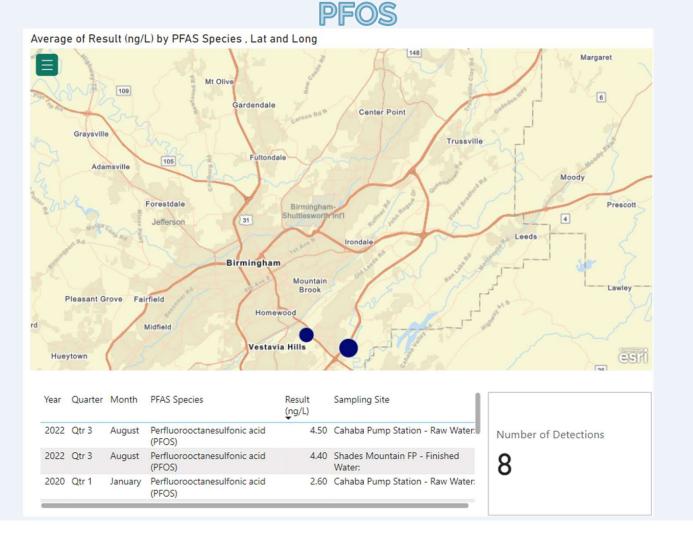
Workstream 4: Treatability Assessments based on data collected & proceed with bench/pilot scale testing, as necessary



BWW's PFAS Data & Key Findings to Date

Mapping of PFAS Data

WATER WORKS

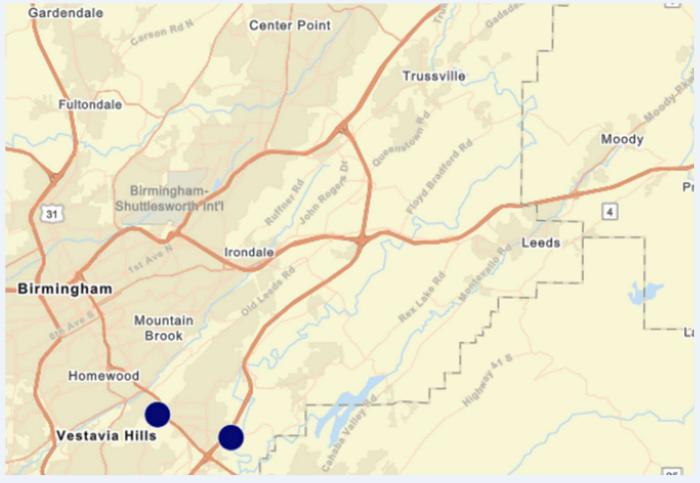

Between 2019 and 2022, both PFOA and PFOS has been detected in the BWW raw/finished water.

Mapping of PFAS Data

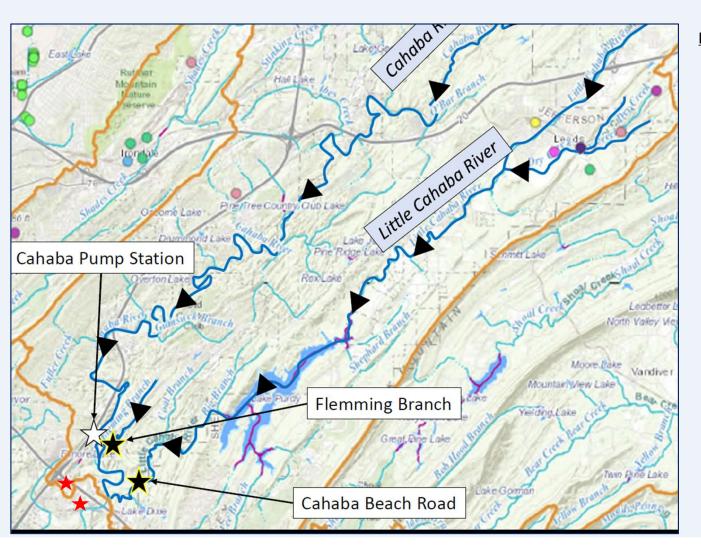
WATER WORKS

Between 2019 and 2022, both PFOA and PFOS has been detected in the BWW raw/finished water.

BUBIRMINGHAM WATER WORKS

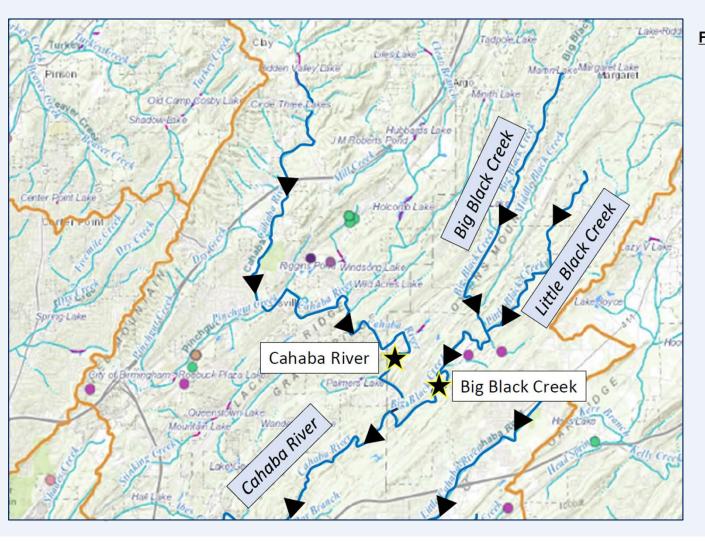

Workstream 2: Source Water Assessment

Additional Sampling locations


- Build Baseline
- Isolate parts of Cahaba Watershed
- Process of Elimination
- Sample Large Tributaries
- Locations in Cahaba

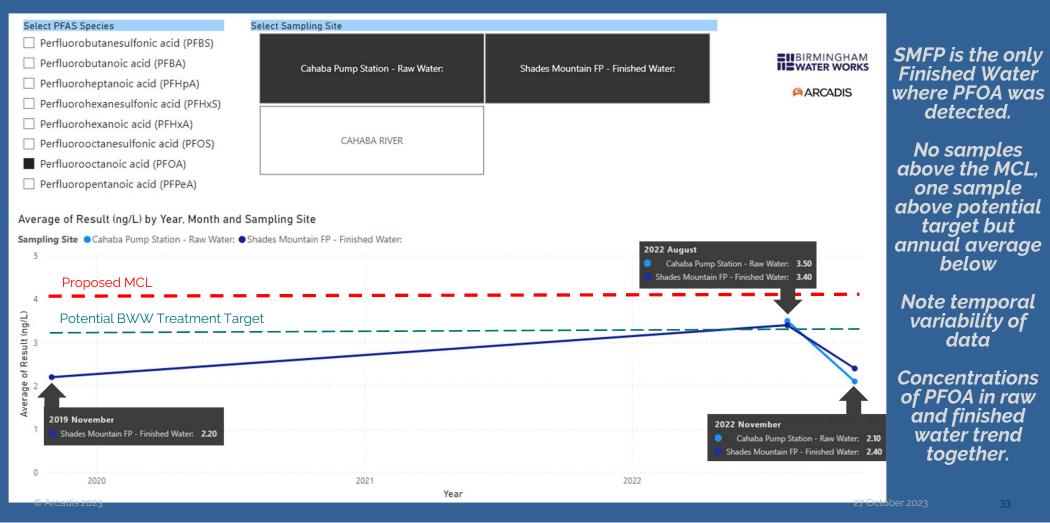
Consider Facilities That May Handle PFAS

- Landfills
- Wastewater Treatment Plants
- Airports
- Fire training Facilities
- Chemical Manufacturing
- Furniture & Carpet Manufacturing
- <u>https://app.adem.alabama.gov/eF</u> <u>ile/</u>



Ongoing Sampling in the Cahaba River Watershed

Ongoing Sampling in the Cahaba River Watershed


BWW: Raw Vs. Finished Water PFOS Over Time

Select PFAS Species Select Sampling Site Perfluorobutanesulfonic acid (PFBS) **BIG BLACK CREEK** CAHABA RIVER BIBIRMINGHAM Perfluorobutanoic acid (PFBA) SMFP is the only Perfluoroheptanoic acid (PFHpA) **ARCADIS Finished Water** Perfluorohexanesulfonic acid (PFHxS) Shades Mountain FP - Finished Water: CAHABA BEACH RD where PFOS was Perfluorohexanoic acid (PFHxA) Perfluorooctanesulfonic acid (PFOS) detected. Cahaba Pump Station - Raw Water: Perfluorooctanoic acid (PFOA) Perfluoropentanoic acid (PFPeA) One sample 2022 August above the MCL Cahaba Pump Station - Raw Water: 4.50 Average of Result (ng/L) by Year, Month and Sampling Site Shades Mountain FP - Finished Water: 4.40 but annual Sampling Site Ochaba Pump Station - Raw Water: Oshades Mountain FP - Finished Water: average below 5 **MCL Proposed MCL** Note temporal of Result (ng/L) Potential BWW Treatment Target variability of data 3 Concentrations of Average o PFOS in raw and 2022 November 2020 January 2021 December Cahaba Pump Station - Raw Water: 2.60 finished water Cahaba Pump Station - Raw Water: 2.60 1 Shades Mountain FP - Finished Water: 2.50 Shades Mountain FP - Finished Water: 2.60 Shades Mountain FP - Finished Water: 2.30 trend together. 2022 2020 2021 Year

BUBIRMINGHAM

BWW: Raw Vs. Finished Water PFOA Over Time

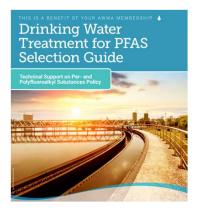
BUBIRMINGHAM WATER WORKS

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

- 3. Planning and Monitoring Considerations at BWW
- 4. Treatment Options and Considerations
- 5. Potential Cost of Treatment
- 6. Proactive Preparation Steps for Utilities


34

PFAS Treatment Technologies and Considerations

- EPA assumes actions to comply with the rule, including installation of treatment technologies, will occur by 2026.
- EPA has identified the following as **best available technologies** (BATs):
 - Granular activated carbon (GAC)
 - Anion Exchange (AIX)
 - Membranes: Nanofiltration (NF), Reverse Osmosis (RO)
- EPA found that all of **BATs (GAC, IX, RO, and NF) can exceed treatment removal efficiencies > 99%** and can achieve concentrations below analytical detection limits.
 - BATs have inherent differences in the degrees to which they remove various PFAS species.
 - "Longer Chain" PFAS are typically easier to remove (e.g. PFOA, PFOS); shorter chain PFAS are typically more challenging (e.g. PFBS).
 - Pilot testing of select technologies can offer additional insight into which treatment option(s) are most suitable for a specific water quality.
 - Limited full-scale studies have been completed to date
- Consider site specific limitations and system footprints as well as residual handling

AWWA Resource

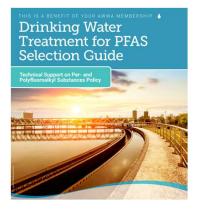

AWWA Source Water Protection

Table 17 - Treatment Technology Summary

^aAppleman et al., 2014; ^bRahman et al., 2014; ^cTakagi et al., 2011; ^dThompson et al., 2011,; ^eFranke et al., 2019; ^fSoriano et al., 2017.

TREATMENT TECHNOLOGY	RELATIVE COST	SHORT- CHAIN PFAS REMOVAL	LONG- CHAIN PFAS REMOVAL	WASTE STREAMS AND PFAS ENDPOINTS	ADDITIONAL OBSERVATIONS
PAC Adsorption ^b	Moderate	< 40%	> 80%	PAC residuals removed via settling or filtration	 Useful for intermittent use. Increases residuals loading and decreases dewaterability. PFAS removal is dependent on PAC type and dose. Performance impacted by competition for adsorption sites on carbon.
GAC Adsorption ^{a,b,c,e}		 Media disposal will be required. PFAS removal decreases as adsorption sites become exhausted, and there will be no removal once breakthrough is reached. PFAS will compete for sites with other organic compounds. Less economically feasible at higher concentrations (mg/L) due to relatively quick PFAS breakthrough. 			
lon Exchange ^{a,b,e}	Moderate to High	< 95%	55% to 97%	Backwash stream or IX resin	 Resin can be specialized specifically for PFAS, allowing for a higher capacity than activated carbon (site-specific). Resin disposal will be required. Removal decreases as IX and adsorption sites become exhausted, and there will be no removal once breakthrough is reached. PFAS will compete for sites with other organics. Less economically feasible at high concentrations (mg/L) due to relatively quick PFAS breakthrough.

AWWA Resource

AWWA Source Water Protection

Table 17 - Treatment Technology Summary (Cont.)

TREATMENT TECHNOLOGY	RELATIVE COST	SHORT- CHAIN PFAS REMOVAL	LONG- CHAIN PFAS REMOVAL	WASTE STREAMS AND PFAS ENDPOINTS	ADDITIONAL OBSERVATIONS
Nanofiltration ^{a,b,e,f}	High	> 95%	> 95%	Concentration stream	 NF concentrate will contain high PFAS concentrations and will require disposal, which can be costly. Post-treatment may be required for corrosion mitigation, depending on the type of NF membrane used. High energy requirements.
Reverse Osmosis ^{a,b,d}	High	> 99%	> 99%	Concentrate stream	 RO concentrate will contain high PFAS concentrations and will require disposal, which can be costly. Post-treatment will be required for corrosion mitigation to restabilize RO permeate. Highest energy requirements. Likely not necessary for the sole purpose of treating PFAS.

^aAppleman et al., 2014; ^bRahman et al., 2014; ^cTakagi et al., 2011; ^dThompson et al., 2011,; ^eFranke et al., 2019; ^fSoriano et al., 2017.

27 October 2023

PFAS Treatment: GAC, Pros vs. Cons

GAC ADVANTAGES	GAC DISADVANTAGES
High removal of long-chain PFAS and moderate removal of short-chain compounds	Potential competitive adsorption reduces PFAS removal efficacy
Reliable PFAS removal	O&M costs can be a burden if GAC is replaced/reactivated frequently
Vessels/filter systems do not require large footprint	Desorption of PFAS or other contaminants is possible
Opportunities to retrofit conventional sand filters for GAC	 Backwash water must be disposed of (or recycled), although backwash is relatively infrequent compared to traditional media filters; PFAS concentrations
Provides additional constituent removal, such as taste and	in backwash streams are not well characterized
odor compounds, TOC (and associated DBP reduction), and CECs	Potential for nitrification within the GAC system or within the distribution system
 Can be temporarily installed for short-term PFAS removal applications 	 GAC media will need to be reactivated or disposed and future regulatory requirements for air emissions from reactivation and disposal are uncertain

Overview of Drinking Water Treatment Technologies | US EPA

Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

© Arcadis 2023

AWWA Source Water Protection

27 October 2023

BUBIRMINGHAM

PFAS Treatment: GAC

PFAS Species in Proposed Rule	# of Carbons	# of Bench Studies	# of Pilot Studies	# of Full Scale Studies	Maximum Removal Efficiency	PFAS Type	<mark>BA0</mark>
PFOA	8	23	9	17	<99.8	Carboxylate, Long Chain	
PFOS	8	24	10	15	99.7	Sulfonate, Long Chain	
PFNA	9	6	3	8	<99	Carboxylate, Long Chain	
PFHxS	6	13	7	11	99.5	Sulfonate, Long Chain	
PFBS	4	13	7	8	99.5	Sulfonate, Short Chain	
HFPO-DA (Gen X)	6	1	1	1	93	Other, Short Chain	

© Arcadis 2023 Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

BA0 Perhaps remove these last two columns . If we decide to do so, the same is needed for slides 48 and 50 below Beciragic, Alma, 2023-10-11T23:35:55.285

BUBIRMINGHAM

PFAS Treatment: IX

PFAS Species in Proposed Rule	# of Carbons	# of Bench Studies	# of Pilot Studies	# of Full Scale Studies	Maximum Removal Efficiency	PFAS Type
PFOA	8	15	7	4	99.3	Carboxylate, Long Chain
PFOS	8	16	8	4	99.7	Sulfonate, Long Chain
PFNA	9	6	3	2	>99	Carboxylate, Long Chain
PFHxS	6 6		7	4	>99	Sulfonate, Long Chain
PFBS	4	12	8	4	99.3	Sulfonate, Short Chain
HFPO-DA (Gen X)	6	4	1	0	99.3	Other, Short Chain

© Arcadis 2023 Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

oer 2023

PFAS Treatment: RO/NF Membranes

PFAS Species in Proposed Rule	# of Carbons	# of Bench Studies	# of Pilot Studies	# of Full Scale Studies	Maximum Removal Efficiency NF	Maximum Removal Efficiency RO	PFAS Type
PFOA	8	4	4	5	99.9	99.9	Carboxylate, Long Chain
PFOS	8	6	4	5	>99.9	99.9	Sulfonate, Long Chain
PFNA	9	2	1	4	99	>98	Carboxylate, Long Chain
PFHxS	6	2	4	4	>99	>99	Sulfonate, Long Chain
PFBS	4	3	4	3	99.8	99.8	Sulfonate, Short Chain
HFPO-DA (Gen X)	6	0	1	0	-	>64.2	Other, Short Chain
© Arcadis 2023 Technologi	es and Costs fo	or Removing P	FAS from Drin	king Water (E	PA-822-P-23-011) (N	<u> 1arch 2023).pdf</u>	October 2023 41

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

- 3. Planning and Monitoring Considerations at BWW
- 4. Treatment Options and Considerations
- **5. Potential Cost of Treatment**
- 6. Proactive Preparation Steps for Utilities

Economic Analysis of the Proposed Rule

- EPA expects roughly 66,000 water systems to be subject to the rule, with approximately 3,400-6,300 systems anticipated to exceed one or more MCL.
- Benefits are assessed as avoided cases of illness and deaths associated with exposure to the six PFAS in the NPDWR.

Annualized Quantified Rule Benefits (i.e., per year)	3% Discount Rate	7% Discount Rate
	\$1.23 billion	\$908 million

 Costs are assessed as the expenses incurred by public water systems to monitor for the six PFAS included in the NPDWR, install and operate treatment technologies, inform consumers, and perform record-keeping and reporting responsibilities. State (or primacy agency) costs are assessed as expenses incurred to administer and implement the rule.

Annualized Quantified Rule Costs (i.e., per year)	3% Discount Rate	7% Discount Rate
	\$772 million	\$1.20 billion

EPA vs. AWWA Cost Estimate Variability

The EPA expects the annualized national compliance cost of <u>\$1.2 billion</u>, at 7% discount rate.

Annualized Quantified Rule Costs (i.e., per year)	3% Discount Rate	7% Discount Rate
	\$772 million	\$1.20 billion

Independent analysis performed by AWWA estimates a cost to comply with the PFAS Rule in excess of \$54 billion, which equates to an annualized cost of over <u>\$2.7 billion</u> (approximately 230% of the number estimated by EPA).

27 October 2023

BUBIRMINGHAM

Capital Cost Estimates & Annual O&M Cost Estimates

• EPA developed dozens of Work Breakdown Structure cost equations for treatment at surface and ground water systems across the range of bed life (5,000 to 150,000 BVs) and residuals management scenarios (hazardous and non-hazardous), including high, mid, and low-cost levels.

Cost Equation Parameters for GAC																	
GW/SW	Size Category	Comp Level	Design Type	Bed Volumes	Spent Media	Cost Type	Useful Life	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
SW	Large	High	Gravity	15000	non-haz	Total Capital	36.16	0	0	0	0	0	0	5.6223	-1710.516	521096.6523	2907817.876
SW	Small	Low	Gravity	20000	non-haz	Total Capital	30.1	0	0	0	0	0	0	-680031.2794	1164826.093	90173.9878	597169.993
SW	Medium	Low	Gravity	20000	non-haz	Total Capital	33.63	0	0	0	0	0	0	0	-7950.5001	602521.8341	1183038.547
SW	Large	Low	Gravity	20000	non-haz	Total Capital	35.48	0	0	0	0	0	0	4.3917	-1341.5372	448854.6103	2202911.504
SW	Small	Mid	Gravity	20000	non-haz	Total Capital	29.67	0	0	0	0	0	0	-695944.7967	1222380.028	101334.0925	675311.7916
SW	Medium	Mid	Gravity	20000	non-haz	Total Capital	33.55	0	0	0	0	0	0	0	-8934.2012	639221.518	1290503.976
SW	Large	Mid	Gravity	20000	non-haz	Total Capital	35.6	0	0	0	0	0	0	4.6871	-139 <mark>0</mark> .9422	444653.951	2694131.733
SW	Small	High	Gravity	20000	non-haz	Total Capital	31.39	0	0	0	0	0	0	-706894.5843	1215653.443	325669.8495	877408.3651
SW	Medium	High	Gravity	20000	non-haz	Total Capital	34.95	0	0	0	0	0	0	1181.859	-31797.4456	827544.4019	1609823.945
SW	Large	High	Gravity	20000	non-haz	Total Capital	36.16	0	0	0	0	0	0	5.6223	-1710.516	521096.6523	2907817.876
SW	Small	Low	Gravity	25000	non-haz	Total Capital	30.1	0	0	0	0	0	0	-680031.2794	1164826.093	90173.9878	597169.993
SW	Medium	Low	Gravity	25000	non-haz	Total Capital	33.63	0	0	0	0	0	0	0	-7950.5001	602521.8341	1183038.547
SW	Large	Low	Gravity	25000	non-haz	Total Capital	35.48	0	0	0	0	0	0	4.3917	-1341.5372	448854.6103	2202911.504
SW	Small	Mid	Gravity	25000	non-haz	Total Capital	29.67	0	0	0	0	0	0	-695944.7967	1222380.028	101334.0925	675311.7916
SW	Medium	Mid	Gravity	25000	non-haz	Total Capital	33.55	0	0	0	0	0	0	0	-8934.2012	639221.518	1290503.976
SW	Large	Mid	Gravity	25000	non-haz	Total Capital	35.6	0	0	0	0	0	0	4.6871	-1390.9422	444653.951	2694131.733
SW	Small	High	Gravity	25000	non-haz	Total Capital	31.39	0	0	0	0	0	0	-706894.5843	1215653.443	325669.8495	877408.3651
SW	Medium	High	Gravity	25000	non-haz	Total Capital	34.95	0	0	0	0	0	0	<mark>11</mark> 81.859	-31797.4456	827544.4019	1609823.945
SW	Large	High	Gravity	25000	non-haz	Total Capital	36.16	0	0	0	0	0	0	5.6223	-1710.516	521096.6523	2907817.876
SW	Small	Low	Gravity	5000	non-haz	Annual O&M	30.1	0	0	0	0	0	0	1675545.867	-963611.7556	632356.4623	26119.9012

<u>Technologies and Costs for</u> <u>Removing PFAS from Drinking</u> <u>Water (EPA-822-P-23-011) (March</u> <u>2023).pdf</u>

© Arcadis 2023

Why a Correction Factor of 2.8?

Cost of GAC Treatment for SMFP: EPA Estimate vs. Estimate from Current Comparable Project

Filter Plant	Design Capacity (MGD)	Design Type	Capital Cost based on USEPA's model (2020 dollars)	O&M based on USEPA's model – Non-Hazardous Waste (2020 dollars)	Capital Cost Based on USEPA's Model (in 2023 dollars, 1.32)	O&M Cost Based on USEPA's Mod (in 2023 dollars, x1.32)	
SMFP	80	Gravity	\$31,764,212.93	\$4,509,321.67	\$41,928,761.07	\$5,952,304.60	
Table A2. C	Construction	Costs (2022	Q4 dollars) for Gilbe	ert GAC Facility and I	Backwash Pump Station		► = 2.8 x
		Backwash	Pump Station	\$5,334,001			
		GA	C Facility	\$72,674,760			
		Total	Direct Cost	\$78,008,761	Diant	Design	Construction Control
		Su	btotal 1	\$83,562,985	Plant	Capacity	Construction Costs
	Subtotal 2		btotal 2	\$88,576,764	(allhert	65 MGD	\$97,992,001.43
		Subtotal 3		\$90,658,318			
			(CCI Corrected) Q4 dollars)	\$97,992,001	SMFP WFP	80 MGD 60 MGD	\$120,605,540.22 \$90,454,155.16

Cost Estimate Case Study: a System in AL Serving ~ 50,000 ppl

- What are the potential costs associated with GAC treatment for this System?
 - Information needed to determine potential costs associated with GAC:
 - Water source: Ground Water
 - Design flow: 10 MGD, Size Category: Large
 - Average flow: Assume 5 MGD
 - Assume Pressure GAC
 - Range of costs presented, in the absence of RSSCT/pilot testing data to speak to appropriate GAC Bed Volumes (BVs)
 - Bed volume:
 - EPA presents BV's ranging from 5,000 150,000.
 - Enveloped BVs of 25,000 75,000 as most representative
 - Assume: Mid-level estimate (EPA presents low, mid, and high comps)
 - Estimates for both Capital and O&M costs presented
 - Spent media: Assume non-hazardous waste

Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

BUBIRMINGHAM WATER WORKS

Cost Estimate Case Study: a System in AL Serving ~ 50,000 ppl

Appendix A. Cost Equations

Notes:

- Cost equations presented here take one of the following forms, identified by which coefficients (C1 through C10) are nonzero:
 - $Cost = C1 Q^{C2}$
 - or Cost = C3 Ln(Q) + C4
 - or $Cost = C5 e^{(C6 Q)}$
 - or $Cost = C7 Q^3 + C8 Q^2 + C9 Q + C10$

where Q is design flow in MGD for total capital costs, or average flow in MGD for annual O&M costs. Resulting costs are in 2020 dollars.

- Equations are designated as for small, medium, or large systems. These equations apply as follows:
 - Small system equations apply where design flow (Q) is less than 1 MGD
 - Medium system equations apply where design flow (Q) is 1 MGD or greater, but less than 10 MGD
 - o Large system equations apply where design flow (Q) is 10 MGD or greater

Note: although the independent variable Q in the O&M equations is average flow, selection between O&M equations for small, medium, and large systems is made of design flow.

- EPA developed each equation using the method described in Section 7.1.
- For GAC, equations are not presented for gravity designs for groundwater systems, because
 groundwater systems are unlikely to use this design type.
- For POU RO, costs do not vary by component level input (high, mid, low); equations are not
 presented for medium and large systems.
- For Nontreatment, medium system size curves are valid only up to 3.536 MGD design flow (1.417 MGD groundwater average flow and 1.345 MGD surface water average flow); equations are not presented for systems of greater size.

Bed Volumes	Estimated Capital Cost (in 2020 Dollars)	Estimated O&M Cost (in 2020 Dollars)	Estimated Capital Cost (in 2023 Dollars) (x1.32)	Estimated O&M Cost (in 2023 Dollars) (x1.32)	Capital Cost EPA Estimate Likely an Underestimation → 2.8x Correction Factor	
25,000		\$772,356.33		<mark>\$1,019,510.35</mark>		
50,000	\$7,792,348.12	\$547,846.36	<mark>\$10,285,899.52</mark>	\$723,157.19	<mark>\$28,800,518.65</mark>	
75,000		\$481,183.98		<mark>\$635,162.85</mark>		

Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

Funding & Affordability

- Estimated costs of treatment far outweigh funding that is available for utilities
 - The federal support available to local utilities is likely considerably limited, as projects focusing on other contaminants are also eligible for the same funding.
 - Clean Water State Revolving Fund (CWSRF)
 - \$1 billon (over 5 years FY2022 FY2026) allocation for PFAS and/or other emerging contaminants
 - Eligible projects: wastewater, reuse, and stormwater
 - Drinking Water State Revolving Fund (DWSRF)
 - \$4 billon allocation for PFAS and/or contaminants on the Contaminant Candidate List (CCL)
 - Eligible projects: drinking water
 - Emerging Contaminants in Small or Disadvantaged Communities Grant Program
 - \$5 billion allocation for PFAS and/or other contaminants
 - Eligible projects: drinking water

Cost Estimates & Class Action Settlements Available to Utilities

Cost Estimates	BWW - SMFP	5 MGD Example
EPA Capital Cost	\$41,928,761.07	\$10,285,899.52
BWW Cost Estimate	\$120,605,540.22	N/A
Estimated Allocations		
3M	\$7,714,149 - \$12,901,569	\$1,021,550 - \$2,468,269
DuPont	\$740,001 - \$1,237,656	\$97,995 - \$236,782
Total:	\$8,454,150 - \$14,139,225	\$1,119,545 - \$2,705,051

Notes:

- Cost estimates are based on assumptions, where necessary, regarding average/max flow rates
- Calculations consider PFAS data available to date
- DuPont/3M allocations: Per Impacted Water Source (ie. above estimate for Cahaba)

Important Dates and Deadlines: DuPont and 3M Settlements

	DuPont	3M
Deadline to Submit 'Opt-Out' Requests	12/4/2023	12/11/2023
Court's Final Fairness Hearing	12/14/2023	2/2/2024
Phase One Public Water System Settlement Claims Form	60 Days After the Effective Date	60 Days After the Effective Date

Any Questions? Please Contact Mark Parnell, Parnell Thompson, LLC: parnell@ptlawllc.com

© Arcadis 2023

Public Water System Settlements - DuPont & 3M

Presentation Agenda

1. Rule Summary: Proposed MCLs, Anticipated Timeline

2. Prevalence of PFAS: Alabama, UCMR 3, UCMR 5

- 3. Planning and Monitoring Considerations at BWW
- 4. Treatment Options and Considerations
- 5. Potential Cost of Treatment
- 6. Proactive Preparation Steps for Utilities

Proactive Preparation Steps for Utilities

- 1. Start UCMR5 sampling as soon as possible
 - Allows for early assessment of treatment needs
 - Results cover initial PFAS Rule monitoring requirements
- 2. Identify potential sources
 - Work with dischargers / responsible parties to eliminate contamination
 - Consult legal counsel if/as appropriate
- 3. Prepare communications strategy
 - UCMR5 results are published in CCRs
 - Consider **any** PFAS detection a potential PR challenge
- 4. Conduct pilot- / bench-scale testing strategically
 - Evaluate all UCMR5 compounds
 - Plan for the possibility of future PFAS regulations
- 5. Consider treatment design for unregulated PFAS

2	
what's	
the	
plan?	
	L

BIRMINGHAM

Proactive Preparation Steps for Utilities

- 6. Seek state and federal funding
 - Bipartisan Infrastructure Law/ Clean Water State Revolving Fund (CWSRF), Drinking Water State Revolving Fund (DWSRF), Emerging Contaminants in Small or Disadvantaged Communities Grant Program
 - Possible cost recovery funds from State / direct litigation against PFAS dischargers
- 7. Develop a residuals management plan
 - Account for the possibility of hazardous designation under CERCLA and/or RCRA
 - Budget appropriately

what's
the
plan?
Pierre

BIRMINGHAM

WATER WO

54

BWW October 2023

UCMR 3 Data – Average Concentrations & Species across AL (units: ng/L)

ample Above or Equal to MRL		Yes	Τ.				
Annual of Analytical Baselt Makes (an /1)		Column Label	~				
Average of Analytical Result Value (ng/L) Row Labels	-	PFBS	PFHpA	PFHxS	DENIA	PEOA	PFOS
E AL		126.67	14.19			32.81	60.87
Albertville Utilities Board			12.50			20.00	
New Plant (9 MGD)			15.00			20.00	
Old Plant (12 MGD)			10.00			20.00	
Boaz Water & Sewer Board			10.00			20.00	
Albertville Utilities Intertie			10.00			20.00	
Clanton Water Department			10.00			20.00	
Clanton Water Treatment Plant			10.00			20.00	
Colbert County Rural Water System						30.00	42.50
Cherokee						20.00	50.00
Muscle Shoals						20.00	40.00
Water Treatment Plant							40.00
West Lawrence						40.00	40.00
Florence Water-Wastewater Department						20.00	50.00
Cypress Creek + Treatment Plant							60.00
Wilson Lake + Treatment Plant						20.00	40.00
Gadsden Waterworks & Sewer Board			17.50			30.00	46.67
Water Treatment Plant			17.50			30.00	46.67
Northeast Alabama Water System		140.00	15.00			32.00	56.67
Albertville Water			10.00			20.00	
Centre Water		140.00	17.50			35.00	56.67
Rainbow City Utilities Board		100.00	13.33			30.00	60.00
Gadsden Water Intertie		100.00	13.33			30.00	60.00
Shelby County Water System			10.00				
Talladega/Shelby WTP			10.00				
Southside Waterworks			13.33			30.00	45.00
Gadsden Water Intertie			13.33			30.00	45.00
Tri Community Water System			10.00				
5 Star WSD Intertie			10.00				
Well 3 + Treatment Plant			10.00				
VAW Water System, Inc.			20.00			43.33	80.00
West Morgan-East Lawrence Water Intertie			20.00			43.33	80.00
Waterworks Board of Prattville			13.33				
Autauga Hills Well & TP			10.00				
Five Star Water Intertie			20.00				
Treatment Plant 2 (Wells 14 & 15)			10.00				
West Lawrence Water Co-op			10.00			40.00	85.00
West Morgan-East Lawrence Water Intertie			10.00			40.00	85.00
West Morgan - East Lawrence Water Authority			30.00			100.00	90.00
Tennessee River + Treatment Plant			30.00			100.00	90.00

27 October 2023

56

UCMR 5 Data so Far – Average Concentrations & Species across AL (units: ug/L)

Source: Occurrence Data from the Unregulated Contaminant Monitoring Rule | US EPA

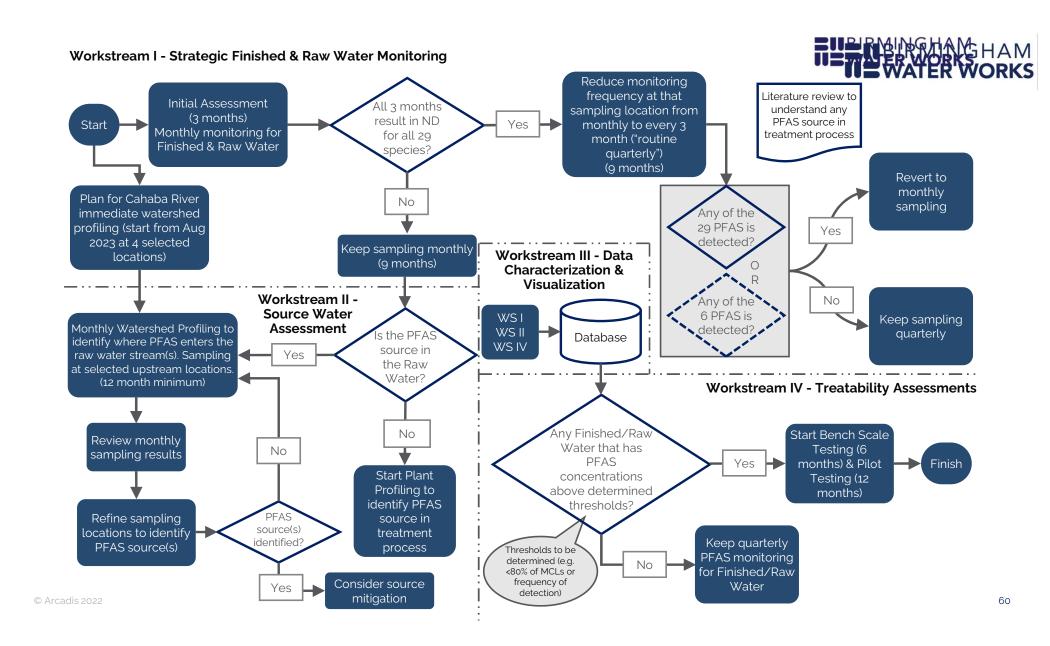
• 63 PWSs in AL reporting UCMR 5 data so far

- 18 PWSs (28.5%) with samples = to or > UCMR 5 MRL
- 7 (11.1%) with proposed PFAS rule MCL exceedance for PFOA and/or PFOS

Row Labels	Ψ.	6:2 FTS	HFPO-DA	lithium	PFBA	PFBS	PFDA	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	PFPeA	PFPes
BAL				20.9250	0.0073	0.0163		0.0047	0.0074			0.0093	0.0089	0.0143	
ASBURY WATER SYSTEM					0.0083	0.0031		0.0047	0.0043			0.0091	0.0058	0.0035	
Entry Point Facility					0.0083	0.0031		0.0047	0.0043			0.0091	0.0058	0.0035	
BELFOREST WATER SYSTEM					0.0074	0.0030									
BELFOREST WATER SYSTEM					0.0074	0.0030									
BEULAH UTILITIES DISTRICT					0.0077				0.0049			0.0077	0.0042	0.0030	
Consecutive Connection					0.0077				0.0049			0.0077	0.0042	0.0030	
BREWTON WATER WORKS				15.1750											
BREWTON WATER WORKS				15.1750											
BRIDGEPORT UTILITIES BOARD						0.0031									
Bridgeport Utilities Board						0.0031									
ECLECTIC WATER WORKS & SEWER BOARD					0.0062										
Entry Point Facility					0.0062										
				37.7333											
GILBERTOWN (UTILITIES BOARD OF TOWN OF)				37.7333											
GREENVILLE WATER WORKS				9.7000											
GREENVILLE WATER WORKS				9.7000											
HANCEVILLE (THE WWSB OF THE CITY OF)				11.0000		0.0033									
HANCEVILLE (THE WWSB OF THE CITY OF)				11.0000		0.0033									
HOLTVILLE WATER SYSTEM					0.0075	0.0560		0.0046	0.0131			0.0141	0.0148	0.0226	
HOLTVILLE WATER SYSTEM					0.0075	0.0560		0.0046	0.0131			0.0141	0.0148	0.0226	
HUNTSVILLE UTILITIES					0.0059	0.0044							0.0090		
Guntersville Lake (SE) & TP					0.0062	0.0033									
Tennessee River (SW) & TP					0.0056	0.0038									
Williams Well						0.0062							0.0090		
LANETT WATER WORKS					0.0050	0.0070									
Connection to Veolia Treatment Plant					0.0050	0.0070									
MARBURY WATER SYSTEM, INC.					0.0130	0.0730		0.0065	0.0190			0.0140	0.0170	0.0320	
Five Star					0.0130	0.0730		0.0065	0.0190			0.0140	0.0170	0.0320	
OPELIKA UTILITIES									0.0035			0.0070	0.0060		
R.A. Betts Water TP									0.0037			0.0070	0.0060		
Saugahatchee Water TP									0.0030						
RIVERVIEW WATER WORKS				14.0000											
Well #2 TP				14.0000											
SOUTH MARENGO CO WATER & FIRE PRO AUTH				19.0000											
Entry Point Facility				19.0000											
TAYLOR WATER SYSTEM				12.0000											
THOMASVILLE WATER WORKS & SEWER BOARD						0.0262		0.0030	0.0073			0.0062	0.0086	0.0102	

UCMR 5 Data so Far – Average Concentrations Per Species within AL (units: ug/L)

Source: Occurrence Data from the Unregulated Contaminant Monitoring Rule | US EPA


	A		В	С	D	E	F	G	Н	1
1										
2	AnalyticalResultsSign	=	Τ.							
3	State	AL	T .							
4										
5	Average of AnalyticalResultValue	Column	Labels 🔻							
6	Row Labels	↓ lithium		PFBA	PFBS	PFHpA	PFHxA	PFOA	PFOS	PFPeA
7	⊟L			0.0064	0.004075		0.003466667	0.00695	0.007	
8	HUNTSVILLE UTILITIES			0.0059	0.004433333				0.009	
9	BELFOREST WATER SYSTEM			0.0074	0.003					
10	OPELIKA UTILITIES						0.003466667	0.00695	0.006	
11	■S		20.925	0.0077	0.0223375	0.0047	0.00972	0.01022	0.01008	0.01426
12	GILBERTOWN (UTILITIES BOARD OF TOWN OF	37.	73333333							
13	SOUTH MARENGO CO WATER & FIRE PRO AUT	н	19							
14	BREWTON WATER WORKS		15.175							
15	RIVERVIEW WATER WORKS		14							
16	TAYLOR WATER SYSTEM		12							
17	GREENVILLE WATER WORKS		9.7							
18	HANCEVILLE (THE WWSB OF THE CITY OF)		11		0.0033					
19	MARBURY WATER SYSTEM, INC.			0.013	0.073	0.0065	0.019	0.014	0.017	0.032
20	HOLTVILLE WATER SYSTEM			0.0075	0.056	0.0046	0.0131	0.0141	0.0148	0.0226
21	THOMASVILLE WATER WORKS & SEWER BOAR	D			0.0262	0.003	0.0073	0.0062	0.0086	0.0102
22	LANETT WATER WORKS			0.005	0.007					
23	ECLECTIC WATER WORKS & SEWER BOARD			0.0062						
24	ASBURY WATER SYSTEM			0.0083	0.0031	0.0047	0.0043	0.0091	0.0058	0.0035
25	BEULAH UTILITIES DISTRICT			0.0077			0.0049	0.0077	0.0042	0.003
26	BRIDGEPORT UTILITIES BOARD				0.0031					

Another Publicly Available Dataset: Supplemental Public Water Supply PFAS Monitoring

Source: PFAS Analytic Tools (epa.gov)

Spills ∰ To		Production 🖻 Environmental Media 🔒 Discharge N	4onitoring 🎈 Superfund Sites 🏛 Federal Sites 🖿 Industry S	Sectors → Transfers Sectors Contact Us
8 🛃 🚺 No selections applied				
FFAS Analytic Tools Home Scope of Drinking Water Samples for		Supplemental Public Wate	er Supply PFAS Monitoring Data	✓ More Information
Public Water Systems (PWSs): Most Recent Sample at PWS All Samples at PWS	Total PWSs with Samples 10,492	Total Samples 664,588	PWS with Samples in Selection 10,492	Samples in Selection 664,588
filters:	▲ Legend	o 2	\$	🕹 X
EPA Region	Results Reported		PWSs Sampled by State/County/Tribe	~
State Territory or Tribe	Select a single state to view county-level detection info	rmation.	3.000	
Sample Year			₽ 2,000 -	
PWS Name	and the second		1 1910 1 1 2 8 9 1 1 3 9 6 1 1 3 9 6 1 1 3 9 6 1 1 3 9 6 1 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 3 9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PWS Size	7.6		1.000	Ļ
Contaminant	P-14			 156 141 141 140 140 141 141
Reporting	North Pacific Ocean	North Atlantic Ocean	41. 41. 42. 12. Or. 42. 7. Co. 40. 64.	ne of of no no no to to to to the or outer
	_ 1000 km _	© OpenStreetMap contributors	Select state's bar to see counts by county/tribe.	

PFAS Treatment: IX, Pros vs. Cons

IX ADVANTAGES	IX DISADVANTAGES
	Potential competitive exchange and fewer secondary water quality benefits compared to other processes.
PFAS-selective resins are available and research continues.	O&M costs may be significant if frequent resin replacement is
Reliable treatment process with high removal of long-chain PFAS	required.
and moderate to high removal of short-chain PFAS, although this selectivity is resin dependent.	 Backwash water must be disposed of (or recycled), although backwash is relatively infrequent.
Smaller footprint compared to GAC.	 Piloting will be required prior to full-scale implementation.
Moderate capital costs.	 IX resin is more costly on a pound-for-pound basis than GAC media,
Potential removal of other contaminants.	however generally less resin is required than GAC.
Relatively short EBCTs compared to GAC.	Future regulatory requirements for waste disposal is uncertain.
Resin is not replaced as often as GAC media.	 Spent media may need to be disposed of as a hazardous waste or low-level radioactive waste due to removal of co-occurring contaminants.

Overview of Drinking Water Treatment Technologies | US EPA

Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

<u>AWWA Source Water Protection</u>

27 October 2023

PFAS Treatment: RO/NF Membranes, Pros vs. Cons

RO/NF ADVANTAGES	RO/NF DISADVANTAGES
 Demonstrated removal of all PFAS tested and anticipated removal of PFAS broadly 	 Concentrate disposal challenges complicated by regulatory uncertainty Post-membrane treatment necessary to ensure stable finished water
Reliable and stable processCompact systems provide smaller footprint	 Pretreatment is important to avoiding membrane fouling or scaling and reduced finished water recovery Energy intensive
 Additional contaminant removal including CECs, TOC, and pathogens 	 Relatively high capital and O&M costs due to influent head pressure required and membrane module maintenance

Overview of Drinking Water Treatment Technologies | US EPA

Technologies and Costs for Removing PFAS from Drinking Water (EPA-822-P-23-011) (March 2023).pdf

© Arcadis 2023

AWWA Source Water Protection

27 October 2023

DuPont Settlement

SMFP:

For illustration purposes only; not reflective of actual allocation awards

DuPont Entities Public Water Provider Settlement Estimated Allocation Range Table

PFAS Score for SMFP: 8 Adjusted Flow Rate for SMFP: 47,730 gpm

Each cell in the Table represents an estimated allocation <u>PER IMPACTED WATER SOURCE (per groundwater well or surface water source)</u>. The Settlement Class consists of Public Water Systems, which may and often do have multiple wells or water sources, each of which would be calculated individually and added up to arrive at the total.

						Adj	usted Flow R	late (gpm)				
	0	100	250	500	1,000	1,500	5,000	10,000	25,000	50,000	100,000	300,000
	2	\$3,477	\$6,718	\$11,059	\$18,203	\$24,363	\$57,898	\$95,296	\$184,131	\$303,025	\$498,624	\$1,097,427
	4	\$13,985	\$27,025	\$44,483	\$73,217	\$97,995	\$232,837	\$383,160	\$740,001	\$1,217,072	\$2,000,647	\$4,389,631
	10	\$14,814	\$27,483	\$45,237	\$74,458	\$99,655	\$236,782	\$389,650	\$752,527	\$1,237,656	\$2,034,438	\$4,647,953
SCORE	50	\$15,802	\$30,536	\$50,263	\$82,730	\$110,726	\$263,079	\$432,912	\$836,021	\$1,374,849	\$2,118,897	\$4,955,178
U	100	\$17,777	\$34,353	\$56,545	\$93,069	\$124,564	\$295,947	\$486,981	\$940,355	\$1,546,248	\$2,540,826	\$5,568,648
S	250	\$23,703	\$45,803	\$75,391	\$124,086	\$166,073	\$394,529	\$649,126	\$1,253,132	\$2,059,840	\$3,382,845	\$7,401,258
PFA	500	\$33,578	\$64,886	\$106,798	\$175,772	\$235,242	\$558,758	\$919,169	\$1,773,678	\$2,913,810	\$4,780,785	\$10,429,847*
₽	750	\$43,453	\$83,968	\$138,201	\$227,450	\$304,395	\$722,895	\$1,188,960	\$2,293,293	\$3,765,268	\$6,171,986*	\$13,426,677*
	1000	\$53,328	\$103,048	\$169,601	\$279,118	\$373,532	\$886,939	\$1,458,501	\$2,811,977	\$4,614,226*	\$7,556,497*	\$16,392,242*

<u>IMPACTED WATER SOURCE</u> means a Water Source that has a Qualifying Test Result showing a Measurable Concentration of PFAS. See the Settlement Agreement for defined terms.

*While the available data has not revealed any Impacted Water Source with the values in the shaded cells, and any such Impacted Water Source would be an anomaly, the Table is designed to account for and estimate any scenario that could occur as a result of the Allocation Procedures.

<u>Aqueous Film-Forming Foam (AFFF) Product Liability Litigation (MDL 2873) – District Court for the District of South Carolina, Master Docket No. 2:18-mn-2873-RMG (pfaswaterprovidersettlement.com)</u>

3M-Estimated-Allocation-Range-Table.pdf (pfaswaterprovidersettlement.com)

3M Settlement

For illustration purposes only; not reflective of actual allocation awards

SMFP:

3M Public Water Provider Settlement Estimated Allocation Range Table

PFAS Score for SMFP: 8 Adjusted Flow Rate for SMFP: 47,730 gpm

Each cell in the Table represents an estimated allocation <u>PER IMPACTED WATER SOURCE (per groundwater well or surface water source)</u>. The Settlement Class consists of Public Water Systems, which may and often do have multiple wells or water sources, each of which would be calculated individually and added up to arrive at the total.

IMPACTED WATER SOURCE
means a Water Source that has a Qualifying Test Result showing a Measurable Concentration of PFAS.
San the Sattlement Among out for defined terms

See the Settlement Agreement for defined terms.

		Adjusted Flow Rate (gpm)										
	0	100	250	500	1,000	1,500	5,000	10,000	25,000	50,000	100,000	300,000
	2	\$36,240	\$70,013	\$115,244	\$189,694	\$253,898	\$603,369	\$993,106	\$1,918,881	\$3,157,910	\$5,196,296	\$11,436,561
PFAS SCORE	4	\$145,785	\$281,723	\$463,713	\$763,253	\$1,021,550	\$2,427,216	\$3,994,261	\$7,714,149	\$12,687,352	\$20,855,641	\$45,758,953
	10	\$148,252	\$286,489	\$471,559	\$776,166	\$1,038,832	\$2,468,269	\$4,061,800	\$7,844,507	\$12,901,569	\$21,207,290	\$46,527,259
	50	\$164,724	\$318,320	\$523,950	\$862,394	\$1,154,236	\$2,742,397	\$4,512,775	\$8,714,863	\$14,331,681	\$23,554,481	\$51,652,815
	100	\$185,313	\$358,108	\$589,437	\$970,176	\$1,298,484	\$3,085,022	\$5,076,399	\$9,802,456	\$16,118,368	\$26,485,901	\$58,047,466
	250	\$247,082	\$477,467	\$785,890	\$1,293,499	\$1,731,188	\$4,112,663	\$6,766,639	\$13,062,886	\$21,472,088	\$35,263,074	\$77,149,868
	500	\$350,027	\$676,390	\$1,113,285	\$1,832,294	\$2,452,225	\$5,824,623	\$9,581,606	\$18,489,120	\$30,373,873	\$49,834,987	\$108,717,963*
	750	\$452,968	\$875,299	\$1,440,643	\$2,370,993	\$3,173,089	\$7,535,613	\$12,393,952	\$23,905,608	\$39,249,406	\$64,336,461*	\$139,954,105*
	1000	\$555,906	\$1,074,195	\$1,767,967	\$2,909,596	\$3,893,781	\$9,245,635	\$15,203,680	\$29,312,376	\$48,098,804*	\$78,768,005*	\$170,863,503*

*While the available data has not revealed any Impacted Water Source with the values in the shaded cells, and any such Impacted Water Source would be an anomaly, the Table is designed to account for and estimate any scenario that could occur as a result of the Allocation Procedures.

Aqueous Film-Forming Foam (AFFF) Product Liability Litigation (MDL 2873) – District Court for the District of South Carolina, Master Docket No. 2:18-mn-2873-RMG (pfaswaterprovidersettlement.com)

3M-Estimated-Allocation-Range-Table.pdf (pfaswaterprovidersettlement.com)