Statement of Basis

Sklar Exploration Company, LLC (Sklar) operates Castleberry Oil & Gas Field, Area No. 3 (Area 3) under Major Source Operating Permit (MSOP) No. 502-0090 in northern Escambia County, east of Castleberry, AL. Area 3 is comprised of several oil & gas wells. On October 23, 2018, the Department issued the first renewal of MSOP 502-0090.

On January 9, 2019, Sklar submitted an application to modify their MSOP to include the addition of three wells acquired from Pruet Production Company (Pruet)—the CCL&T 32-11, CCL&T 32-9 (Range 12 East), and CCL&T 33-10 (the "Pruet wells"). However the CCL&T 32-11 is not included in the aforementioned additional operating wells because the well is dry and no equipment is present; Sklar intends to construct the well as a water injection well with no appreciable sources of emissions, so only two will be added to the permit. The wells came under the control of Sklar as of January 1, 2019, after the Alabama Oil & Gas Board unitized the oil field into several large, contiguous, single-operator units rather than the patchwork of ¼ square mile sections of mineral rights that had existed previously. The Department had been in communication with Pruet and Sklar regarding the impending change of ownership prior to the new year.

Additionally, the permit application seeks to remove nine wells—the CCL&T 33-4, CCL&T 33-2, CCL&T 35-8, Jones 34-4, Hamiter 32-3, Kennedy 36-12, Ralls 30-8, Boothe & Casey 29-6, and Thomasson 29-10—which are now operated by Pruet. Not included in the application, the CCL&T 35-10, which was not transferred to Pruet but shares a well site with CCL&T 35-8, has been shut in and will not be operated again. Also not included in the application, all five 46 HP booster compressors originally permitted in Air Permit 502-0090-X008 have been removed from their sites (their purpose being served by the compressors at the Escambia Booster Station added by Air Permits –X009 and –X010).

Corrections and formatting changes to the MSOP being made at this time include: inclusion of the OOOOa requirements for the booster station originally in Air Permit X009; correcting typos of the Subpart JJJJ emission limits in the provisos and Appendix A; renaming "Provisos for Facility Engines" to "Provisos for the Escambia Booster Station"; renaming the engine at the Escambia Booster Station to *E-01* instead of *3508E* to better match Sklar's internal designations; and adjusting the reporting period for OOOOa to a calendar year period to match the format of Sklar's previous OOOOa reports.

PROJECT DESCRIPTION

Sklar seeks a direct modification of their MSOP, since no construction permit is warranted for these Pruet wells which have been in operation for years.

PROCESS DESCRIPTION

At each well, the produced full well-stream is separated into gas and liquid phases in the high-pressure separator and heater treater before the liquid phase flows to the power oil tank and flashes. An electrically driven pump may be used to recirculate crude from the power oil tank back into the well to a bottom-hole venturi pump. Flash vapor from the power oil tank and breathing and working losses from all the storage tanks is collected and sent to the flare for combustion or to the pipeline for sales. Each well is connected to the power grid and requires no generator. This process for the Pruet wells is identical to that of the existing, permitted Sklar wells.

EMISSIONS

The potential emissions of the produced gas at the Pruet wells, accounting for their flares, are based on continuously burning well gas at a rate of 110 mscf/d, which is the average production for the two wells over the last year. Tank vapor emissions are determined using EPA's Tanks 4.0.9 program and the Vasquez-Beggs Equation. The emissions from the wells' heaters are based on AP-42 factors. Table 1 below reflects the

potential emissions from the project, and Table 2 shows the potential emissions of the facility as a whole from the project added to existing facility emissions. The existing facility emissions are derived from the October 23, 2018 Statement of Basis and the first Title V renewal application, but adjusted to account for the 10 wells no longer operated (9 transferred and 1 plugged) and the 5 small booster engines removed.

	Pollutant	Heaters	Flares	Total Emissions	
	PM	0.033	0.102	0.135	
Pollutant isions PY)	SO ₂	0.001	0.008	0.009	
a Pollu nission (TPY)	NO _X	0.429	3.150	3.579	
Criteria Pollut Emissions (TPY)	CO	0.361	17.137	17.498	
	VOC	0.024	8.228	8.252	
	Total HAPs		0.753	0.753	
9	CO ₂	511.974	5,659.318	6,171.292	
GHG Emissions (TPY)	N ₂ O	0.288	634.827	635.115	
	CH₄	0.241	3.043	3.284	
ш	CO _{2e}	512.503	6,297.188	6,809.691	

Table 1 - Pruet Wells Potential Emissions

	Pollutant	Heaters	Engines	Flares	Total Emissions	
	PM	0.327	4.897	1.403	6.626	
Pollutant sions PY)	SO ₂	0.090	0.000	1.690	1.780	
eria Pollut Emissions (TPY)	NO _X	4.294	20.510	53.997	78.800	
	СО	3.607	20.591	293.803	318.002	
Criteria Emis (T	VOC	0.237	3.097	323.463	326.797	
	Total HAPs		3.409	44.008	47.417	
8	CO ₂	5,119.737	4,766.688	101,568.575	111,455.000	
GHG Emissions (TPY)	N ₂ O	2.878	0.022	7,110.911	7,113.812	
	CH₄	2.414	22.581	52.168	77.163	
Ш	CO _{2e}	5,125.028	5,337.822	108,731.654	119,194.504	

Table 2 - Facility Potential Emissions

Sklar would retain their facility-wide anti-PSD limits of 245 TPY for criteria pollutants. Those limits would be met by Sklar not flaring continuously and instead selling their gas; actual emissions from the wells would be significantly less than their potential emissions.

REGULATIONS

The Pruet wells acquired by Sklar have the same regulatory status as their existing wells in terms of both state and federal regulations.

RECOMMENDATIONS

I recommend that MSOP 502-0090 be modified to include the two aforementioned Pruet wells to be included in the Summary Page of Facility Wells. I also recommend that the wells and engines no longer in service by Sklar be removed from the permit. Additionally the corrections and format changes outlined on page 1 of this analysis ought to be implemented.

R. Jackson Rogers, Jr. Industrial Minerals Section Energy Branch Air Division ADEM May 1, 2019 Date

APPENDIX A CALCULATIONS

Well emissions

Data	Tota		Separ	ator Gas	Tan	ık Gas	Pilo	t Gas	GWP (11/2	29/2013)	40 CFR	Part 98	Sub C GHG Er	nission
Volume	9,262.401	scf/hr (Ind.)	220.0	Mscf/day	0.6	Mscf/day	1.7	Mscf/day	N ₂ 0=	298	1	Factor	s (Table C-1)	
H ₂ S mol%	0.0001%	mol%	0.0001%	mol%	0.0000%	mol%	0.0000%	mol%	CO ₂ =	1	N ₂ 0=	(0.0001	kg/MMBtu
Heat Content	1146.88	Btu/scf (Ind)	1145.10	Btu/scf (Ind)	2124.62	Btu/scf (Ind)	1020.00	Btu/scf (Ind)	CH ₄ =	25	AF	AP 42 Emissions Factor		rs ⁷
VOC MW	3.84	lb/lb-mol ²	3.80	lb/lb-mol ²	27.41	lb/lb-mol ²	0.15 lb/lb-mol ²				NO _X =		0.068	lb/MMBtu
CO ₂	0.26%	mol%	0.26%	mol%	0.18%	mol%	0.50% mol%				CO=		0.37	lb/MMBtu
CH ₄	74.95%	mol%	74.92%	mol%	30.03%	mol%	95.00%	95.00% mol%			PM ₁ =		40	μg/L
C ₆	0.21	lb/lb-mol ²	0.21	lb/lb-mol ²	1.17	lb/lb-mol ²	0.01	lb/lb-mol ²						
OP Hours	8760	Hrs							(Ind. STP)	scf/lbmol=	380.67	60 °F	14.65	psia
Destruction Eff	98.00%	DRE	Hea	it Input	10.62	MMBtu/hr1			(EPASTP)	scf/lbmol=	385.5	68 °F	14.696	psia
				Po	tential F	lare Emissi	on Calcu	lations						
Pollutants														
PM,	40	μg		scf (Ind.)	2.2E-9 lb	8,760	Hr	1 Ton	28.31685	L 1.01	scf(EPA)	l	0.103	Tons
· ····1	L			Hr	μg	Yea	ar	2,000 Lb	scf (EPA	.) 1	scf(Ind.)		Year	
	168.3	15.00.4	0.000	MO - f / ll \	0.0000/	LL C M-10/	0.700	I I=	4.7					_
SO ₂	MScf (In	Lb SO ₂ ⁴		MScf (Ind.) Hr	0.000%	H ₂ S MoI%	8,760	rear	1 Ton 2,000 Lb			= -	0.008 Year	
	IVIOCI (III	u.)		111				Cai	2,000 Lb				Icai	
110	0.068	lb	10.623	MMBtu	8,760	Hr	1	Ton					3.164	Tons
NO _X	MMBt			Hr		⁄ear		00 Lb				-	Year	
			1				' '							
со	0.37	lb		MMBtu	8,760			Ton		78			17.215	
	MMBt	u		Hr	Y	⁄ear	2,0	00 Lb					Year	
	9,262.4	Scf (Ind.)	4	lb-mol	3 0 4	Lb VOC	8,760	Hr	1 Ton	2.00%	Inv. DRE		8.176	Tone
VOC⁵	9,262.4 Hr	Sci (ilid.)		scf (Ind.)		-Mole	_	ear	2,000 Lb	2.00%	IIIV. DRE	+ = +	Year	
	- III		300.07	sci (iiiu.)	LD.	-iviole		eai	2,000 Lb					
IIAD-8	9,262.4	Scf (Ind.)	1	lb-mol	0.21	Lb C ₆	8,760	Hr	1 Ton	2.00%	Inv. DRE		0.453	Tons
HAPs ⁸	Hr		380.67	scf (Ind.)	Lb	-Mole	Y	ear	2,000 Lb			1 - 1	Year	,
CO ₂ ^{5,6}	98.00% DRE	8.11E+07		1.23	110 111101	O ₂ (stoich.)		lb-mol gas	44.01	Ib CO ₂	1 Ton	-	5,670.08	
of Combustion		Yr		1	lb-mol g	as (stoich.)	380.67	scf (Ind.)	lb-mole	e CO ₂	2,000 Lb		Year	
CO,	8.11E+07	Scf (Ind.)	0.26%	mol% CO ₂	1	lb-mol	44.01	Lb CO2	1 Ton				12.41	Tons
of Fuel	Yr	1 - 1 ()		1110170 002		scf (Ind.)	Lb-mole		2,000 Lb			=	Year	
N ₂ O	0.001 M Ton	0.001147			Scf (Ind.)	0.0001		8,760		1.1023] = [0.0103	
20	kg	Scf (Ir	nd.)	Hr		MME	3tu Y∈		ear 1 Me		ic Ton	Ye		
CII	0.445+07	Cof (Ind.)	0.000/	Inv. DDE	74.050/	10/ 011	1	lb-mol	16.042	15 0114	1 Ton		25.63	Tana
CH ₄ Uncombusted	8.11E+07 Yr	Scf (Ind.)	2.00% Inv. DRE		74.95%	mol% CH ₄		scf (Ind.)	16.043 Lb-m	Lb CH4	1 Ton =		Year	
oncombusted							000.070	oor (iiia.)		010	J2,000 EB		1001	
	5,682.49	Tons			0.0103	Tons			25	.63 Tons			5,708.13	Tons
Mass Sum	Year	-	+		Year		+			Year	=		Year	
		CO2				N2O				CH4				
	5 000 40	TDV	V 1		0.0402	TDV	V 200		25.00	TD \	/ DE			
	5,682.49	TPY 682.49	X 1				X 298				X 25 =		6,326.23	-
CO ₂ e	5,	+		3.06		+		640.68				Year		
4		CO2			N2O					CH4	1			
	apacity (MMBtu													
² VOC (Lb/Lb-r	nole) = Σ (Mole	% of Each Co	mpound)* (1%/100)	*MW of	Each Comp	ound) -S	ee Flare GH	IG Spreed S	Sheet for	gas anal	ysis		
	intained <500 lb													
	H_2S (Lb/hr) = Vc					•	•							
	on Factor 168.3			. ,	, , .2	. , (3								
30 ₂ Conversi	UII FACIUI 108.3			() \\(\(\)	1. /225	70.04/	20011	/11. * * * * *						
_			Sct/MSc	f) *(1Lb-Mo	ie/380.67	/ Sct)* (64.0	J66 Lb SO	₂ /Lb-Mole)						
	e flare is 98% eff													
	sing the gas anal													
	ere, Y _j = mole fra									n dioxide	e, etc.) ar	nd R _j = n	umber of ca	rbon
	ydrocarbon con				bon diox	ide, 2 for e	thane, 3 f	or propane	e, etc.					
	d to be "lightly													
° n-Hexane, Be	enzene, Toluene	, etc are HA	Ps, but i-	Hexanes, n	-Heptane	e, n-Octane	, etc are i	not. Assum	e by mass!	50% Hexa	nes and	10% He	ptanes+ are	HAPS

Tank vapor emissions

¹ 42 barrels = 1 US Gallon											
² If the tanks are in series are parallel, each tank wi tank having a throughput	ill have flash emission	ns (ie if 4 tanks a	nd the total throu	ghput is 60 bbl/da	ay of condensate	then the flash	emissions will be	based on each			
³ Working and Breathing L	osses in lbs/year are	obtained from E	PA's Tanks 4.0d pro	gram							
⁴ Flash emissions are typ	ically determined usin	g laboratory me	asurement of the g	as-oil-ratio (GOR) from a pressur	ized liquid samp	ole. Other method	ds many be used.			
⁵ Default tank vapor MW a	assumed by EPA's Tank	s 4.0d program i	s 50. If more speci	ic data is availat	ole, results may	be algebraically	modified				
⁶ The convention used he (VBE) outputs for scf/bbl f be corrected accordingly (rom the VBE workshee	t distributed by	•								
⁷ Recirculated oil has alre	eady flashed but may s	till have workin	g/breathing losses	. The increased t	hroughput from	the power oil is	therefore only cal	culated for the la	tter.		
				41 1111		· ·					

Multiplie	er for Power	3	In Series	, Parallel,	Branching	Production	on bbl/day	35.0	scf/bbl ⁶	11.89					
Oil Recirculation Rate ⁷		or Branching? ²		Branching	EPA Tanks 4.09		Total Workin	Total Working & Breathing Emissions @			VOC only emissions				
Т	Tank Information FLASH Emi		ASH Emiss	sions	Program Outputs		MW = 39.228					TOTALS	16230.56	8.12	
lTanks	Material Stored	Capacity (barrel) ¹	bbl/day	scf/day	lbs/yr	Working Loss ³ (lbs/yr)	Breathing Loss ³ (lbs/yr)	Working Loss ⁵ (lbs/yr)	Loss ⁵ (lbs/yr)	Breathing & Working Losses (scf/day) ⁶	Working Loss ³ (lbs/yr)	Breathing Loss ³ (lbs/yr)	Flash Emissions ^{4,6} (lbs/yr)	Total VOC (Ibs/yr)	Total VOC TPY
T-01	Power Oil	500.0	35.0	416.3	15744.29	1747.96	900.34	4114.19	2119.14	165.72	2874.49	1480.59	10940.68	15295.76	7.65
T-02	Condensate	400.0				873.98	831.35	342.85	326.13	17.79	239.54	227.86		467.40	0.23
T-03	Condensate	400.0						342.85	326.13	17.79	239.54	227.86		467.40	0.23
									<u></u>						