February 22, 2019

Ms. Grace Hall Environmental Engineer Air Division Alabama Department of Environmental Management 1400 Coliseum Blvd Montgomery, AL 36110

RE: Bunge North America, Inc. – Decatur Facility Facility ID 712-0026

Dear Ms. Hall:

Please find enclosed three copies of a permit application package for a plant expansion project at our Bunge North America – Decatur, Alabama facility.

Construction of the plant expansion is scheduled to begin in the third quarter of 2019. Engineering is still in the early stages for portions of this project and therefore, details of some the emission sources are not yet fully available. Estimated emissions from the future portions of the expansion are included in the calculations. An overview of their scope is included in this application because they are part of the expansion project that triggered a PSD review. Additional information, including model numbers and capacities, will be provided as the information becomes available.

This application consists of permit application forms for those sources, a project description, process flow diagrams, emission calculations, air quality data, and BACT analyses for PM and VOC. Bunge understands that no permit application fee is required to be submitted with this application and you will determine how much the permit fee will be.

Please contact Christa Andrew in our corporate office at 314-292-2707 or by email at christa.andrew@bunge.com if you have questions or concerns relative to this application.

Sincerely,

Bunge North America, Inc.

.vO

Michael Klauke Facility Manager

Enclosure

Cc: Jason Davis – Bunge North America, Decatur Christa Andrew. St. Louis

Bunge North America PSD PERMIT APPLICATION

TABLE OF CONTENTS

PSD PROJECT AND PERMITTING PROCESS DESCRIPTION

APPENDIX A – CALCULATIONS AND SUMMARIES APPENDIX B – AMBIENT AIR QUALITY RESULTS BLOCK FLOW DIAGRAMS AND SITE PLANS LAW MAROT DRYER SPECS AND DRYER STACK TEST RESULTS BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS – PM BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS – VOC APPLICATION FORMS

> 103 FORM 105 FORMS 104 FORMS 110 FORMS

PSD Permit Application Project and Permitting Process

Decatur, Alabama

February 2019

Table of Contents

1.0 FACILITY OVERVIEW
1.1 APPLICATION OVERVIEW1
1.2 PROPOSED PLANT MODIFICATIONS1
1.3 APPLICABLE REGULATORY REQUIREMENTS3
1.3.1 Visible Emissions3
1.3.2 Fugitive Dust and Fugitive Emissions3
1.3.3 Process Industries – General Particulate Matter Limits4
1.3.4 Sulfur Compound Emissions4
1.3.5 Organic Compound Emissions4
1.3.6 New Source Performance Standards (NSPS)4
1.3.7 Permits Required5
1.3.8 Major Source Operating Permit (MSOP)5
1.3.9 National Emission Standards for Hazardous Air Pollutants (NESHAPs)5
1.3.10 National Ambient Air Quality Standards (NAAQS)6
1.4 Proposed Permit Limits6
1.4.1 Operational Limit6
1.4.2 NSPS Limits7
1.4.3 MACT Limits7
2.0 PSD APPLICABILITY EVALUATION
2.1 OVERVIEW OF PROJECT8
2.2 PERMITTING EVALUATION METHODOLOGY9
2.3 BASELINE ACTUAL EMISSIONS9
2.4 PROJECTED ACTUAL EMISSIONS10
2.5 BASELINE ACTUAL TO PROJECTED ACTUAL EMISSIONS
2.6 ADDITIONAL EMISSIONS INCREASES – ANCILLARY UNITS
2.7 EXPANSION PROJECT TOTAL EMISSIONS INCREASES13
2.8 MODELED EMISSION RATES FOR PRECURSORS (MERPs) ASSESSMENT14
2.8.1 VOC Precursor Assessment for O ₃ 14
2.8.2 Preconstruction Ambient Air Monitoring15
APPENDIX A
APPENDIX B

1.0 FACILITY OVERVIEW

Bunge North America, Inc. (Bunge) owns and operates an oilseed processing plant in Decatur, Alabama. The plant site is located along the Tennessee River. The immediate area has residential, institutional, and otherwise populated communities. The Decatur plant was originally constructed in 1972 and commenced operation in 1974. The original owner and operator of the plan was Goldkist. The plant was sold to Bunge North America, Inc. (Bunge Corporation at the time) in 1982. In 2012 Bunge expanded the plant to include an edible oils packaging plant.

The facility consists of an integrated soybean processing and edible oil refining facility operating under SIC Code 2075 and an edible oils blending and packaging plant operating under SIC Code 2079.

With this application, Bunge is seeking authorization to modify the facility to accommodate a crush rate of 175,000 bushels a day. The plant is an existing major stationary source. An evaluation of the baseline emissions and projected emissions was conducted. Based on this evaluation, it was determined that the increase in VOC emissions will be over the significant rate of 40 tons per year and PM over 25 tons per year. The increase for all other pollutants was below the significance threshold.

1.1 APPLICATION OVERVIEW

This application document addresses the required PSD requirements and contains:

- the forms required by Alabama Department of Environmental Management (ADEM) for a complete renewal application.
- BACT Analysis
- PSD Calculations
- Process Flow Diagrams

Bunge is requesting that the throughput level be increased to 61,425,000 bushels per year.

1.2 PROPOSED PLANT MODIFICATIONS

To further serve our customers, an expansion at the facility will be undertaken. The goal is to increase the crush rates from 132,000 bushels per day to 175,000 bushels per day. Bunge plans to physically modify the following systems:

1. DT system – EX-2

A new ten (10) tray 240 inch diameter Desolventizer Toaster (DT) is proposed to be installed to replace the existing seven (7) tray 220 inch DT. Conveying requirements from the discharge of the DT to the inlet of the DC are included.

2. DC system – EX-2

A new six (6) deck Dryer-Cooler (DC) – 4 drying decks and 2 cooling decks will be installed in the same location as the existing DTDC. The existing four cyclones will be reused and two new cyclones will be added. Two existing fans will remain and one new one will be added for an increase in the air flowrate.

3. Drying system – CD-6

A new, smaller soybean dryer will be required in addition to the existing Law Marot dryer to achieve the total drying capacity for the new crush rate. The new dryer will be located near the existing soybean dryer.

4. New Tempering Grain Storage

At 175,000 bushel per day (BPD) crush rate, additional grain storage and tempering is required. A new, 60' diameter and 118' tall grain storage silo will be installed to achieve the required capacity. It will be aspirated to an existing baghouse (CD-3) without an increase in air flow.

5. Distillation system – EX-1

There are three (3) large pieces of equipment in the distillation system that will need to be replaced to achieve the desired crush rate. First, the existing 1st stage evaporator and Dome Separator will be replaced with a new system.

Second, the existing Primary vacuum condenser will be replaced. Third, the solvent water separator/hexane work tank will be replaced with a larger unit. Other items that will likely need to be replaced or upgraded in the extraction process are the stripper condenser, solvent heater, mineral oil heater, mineral oil cooler, and waste water stripper.

6. Cracking mill system - PR4

The existing six cracking mills will be replaced with new, larger cracking mills to achieve the required total cracking capacity of 175k BPD crush rate. The existing baghouse and fan will not change however and therefore the emissions will not change.

7. Flaking mill system – PR7

Four (4) new, larger flaking mills will be added to the existing twelve flaking mills system to achieve 175k BPD crush rate. Additional flaking mill aspiration capacity will be added with a new fan and baghouse required for the new flaking mills. Additional conveying will be required.

8. Bean Conditioner – PR6

The existing rotary steam tube bean conditioner will be removed and a new vertical bean conditioner will be installed. Additional conveying will be required.

9. New 120 Boiler - BO5

At 175k BPD crush rate, the increased load on the existing boilers will require that one of them be replaced. Existing boiler BO5 will be replaced with a new 120 mmbtu/hr boiler at the current boiler house.

10. New Diesel-Fired Fire Water Engine

An additional fire water pump will be installed with a diesel fuel fired engine.

In addition, a swap will be made between the baghouses that are currently used for grain cleaning and the headhouse. No new baghouses will be installed but the existing baghouses will be used for the other source. The baghouse on RS-2 will be used for CD-1 and vise versa.

Because the throughput of the facility will be increased, an increase in utilization of other equipment will occur. This increased utilization is addressed in the PSD applicability discussion in Section 2.

1.3 APPLICABLE REGULATORY REQUIREMENTS

This section of the application provides a review of the Alabama Department of Environmental Management Administrative Code air regulations found in 335-3 and those federal regulations applicable to this project. Compliance with the applicable requirements are discussed below.

1.3.1 Visible Emissions

ADEM Admin. Code 335-3-4-.01 limits opacity to 20%. Unless otherwise stated, the facility may discharge into the atmosphere from any source of emission, particulate of an opacity not greater than that designated as forty percent (40%) opacity during one six (6) minute period in any sixty (60) minute period. Bunge has installed or will install particulate controls or maintain good operating procedures on modified sources of particulate matter. Bunge expects that all visible emissions will be below 20% opacity.

1.3.2 Fugitive Dust and Fugitive Emissions

Per ADEM 335-3-4-.02, as is currently done, Bunge shall take reasonable precautions to prevent particulate matter from becoming airborne. Good work practices will continue to ensure that visible dust emissions are not discharged beyond the property line.

1.3.3 Process Industries – General Particulate Matter Limits

Bunge will not cause or permit the emissions of particulate matter in any one hour from any source in excess of the amount shown in Table 4-2 of section 335-3-4-.04 for the process weight per hour allocated to each source.

1.3.4 Sulfur Compound Emissions

ADEM Adm. Code 335-3-5-.01 limits SOx emissions to 4.0 pounds per mm BTU input. The new boiler will be a natural gas fired boiler and will thus be below this limit.

335-3-5-.05 applies to equipment not regulated by rules 3353-5-.01-.04. No other processes emit sulfur compounds and therefore, this rule does not apply to the facility.

1.3.5 Organic Compound Emissions

No new storage tanks will be installed and therefore 335-3-6-.03 and 335-3-6-.26 do not apply. VOCs will be discussed further under the Vegetable Oil MACT regulation section below.

1.3.6 New Source Performance Standards (NSPS)

ADEM has incorporated USEPA's regulations governing Standards of Performance for New Stationary Sources designated in rules 335-3-10-.02 and 03. The following NSPS will apply to the expansion.

- 40 CFR Part 60, Subpart Db, Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units – This standard applies to each steam generating unit that commences construction, modification or reconstruction after June 19, 1984 and that has a heat input capacity from fuels combusted in the steam generating unit of greater than 100 million BTUs/hr. This regulation will apply to the new boiler which will be designed to meet these requirements.
- 40 CFR Part 60, Subpart Dc, Standards of Performance for Small Industrial – Commercial – Institutional Steam Generating Units – This standard applies to each steam generating unit that commences construction, modification or reconstruction after June 9, 1989 and that has a maximum heat input capacity of 100 million BTUs/hr or less but greater than 10 mm BTUs/hr. This regulation will continue to apply to existing boilers at the facility.
- 40 CFR Part 60, Subpart DD, Standards of Performance for Grain Elevators – This standards applies to each affected facility at any storage elevator with more than 1 million bushel storage capacity. Affected

facilities include grain dryers. The new grain dryer to be installed with this project is subject to this regulation. It will be designed to meet these requirements.

• 40 CFR Part 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines - This standards applies to each CI ICE manufactured as a certified National Fire Protection Association fire pump engine after July 1, 2006. This standard applies to the fire pump engines at the facility.

1.3.7 Permits Required

ADEM Adm. Code 335-3-14-.01(a) requires any person constructing or modifying any equipment that will cause, increase or eliminate air pollutants to submit an application for an air permit to construct. This application is submitted in order to fulfill the requirements of this section.

335-3-14-.01(b) requires that before any such equipment be operated, an air permit be obtained from the director.

335-3-14-.04 Prevention of Significant Deterioration Permitting (PSD). The requirements of this rule apply to the major modification of any existing major stationary source. The Bunge Decatur plant is a major source with the potential to emit more than 250 tons per year of one or more of the regulated air pollutants.

The emissions from this project have been evaluated and determined to be a major modification. VOC and PM emissions are projected to be over the significant increase level. Therefore, a PSD evaluation was performed for the VOC and PM increases. A Model Emission Rate for Ozone Precursors (MERP) analysis was performed and presented below.

1.3.8 Major Source Operating Permit (MSOP – "Title V")

The facility will be required to submit an application to incorporate the construction permit into its current MSOP ("Title V" permit) within 12 months after commencing operation of the proposed expansion. Existing CAM Plans are included in the MSOP.

1.3.9 National Emission Standards for Hazardous Air Pollutants (NESHAPs)

ADEM has incorporated USEPA's regulations governing Hazardous Air Pollutants in rule 335-3-11. These are also known as the Maximum Achievable Control Technology (MACT) standards. The following MACT standards will apply to affected facilities at the plant as part of the expansion.

• 40 CFR Part 63, Subpart GGGG – Solvent Extraction for Vegetable Oil Production – The Decatur facility is currently subject to this regulation and

the planned modification does not change that. The plant is currently in compliance with these rules and will continue to comply with these requirements.

- 40 CFR Part 63, Subpart DDDDD Industrial, Commercial, and Institutional Boilers and Process Heaters – Existing boilers at the facility are subject to the requirements of these rules. The regulations will also apply to the proposed new boiler which will be designed to meet these requirements. In addition, the plant will perform the required work practices once the boiler is operating.
- 40 CFR Part 63, Subpart ZZZZ Reciprocating Internal Combustion Engines (RICE) – Existing RICE units at the facility are subject to the requirements of these rules. The plant is currently in compliance with these rules and will continue to comply with these requirements.

1.3.10 National Ambient Air Quality Standards (NAAQS)

The NAAQS and accompanying appedices as set forth in 40 CFR 50 have been incorporated by reference into ADEM Adm. Code 335-3-1-.03. The VOC emission levels resulting from the expansion are above the PSD major modification threshold. There is no NAAQS for PM or VOC. Although VOC is a precursor to ozone which has a NAAQS, there is no EPA approved method for evaluating the 8-hour ozone standard, therefore no ambient air analysis is required for ozone or PM at this time and no PSD ambient air quality analysis has been prepared for the proposed plant expansion. A MERP analysis was performed and is presented in Section 2.

Pre-construction monitoring is required for PSD projects in which the net increase in VOC emissions for the project is 100 tons per year or more. Monitoring conducted by the state will be used for these purposes.

1.4 Proposed Permit Limits

As part of the permit and regulatory review, limits on emissions or operations of the plant were assumed or determined as required pursuant to the review in Section 1.3 above, in the emissions calculations or in the BACT analyses attached to this application. This section of the permit discusses these limits and identifies the limits Bunge is proposing to be incorporated into the construction permit that are being added or modified as part of this project.

1.4.1 Operational Limit

The Decatur plant is being expanded to accommodate a crush rate of 175,000 bushels of soybeans per day in order to meet customer demands. The facility is currently permitted at 56,575,000 bushels on a 12-month rolling total basis.

Bunge is requesting that this limit be replaced with a limit of 61,425,000 bushels per 12-months rolling total.

1.4.2 NSPS Limits

As discussed in Section 1.3.6 above, 40 CFR Part 60, Subpart Db will apply to the new boiler. 40 CFR Part 60, Subpart DD will apply to the new grain dryer. 40 CFR Part 60, Subpart IIII will apply to the new fire pump engine. The new boiler, the new grain dryer and the new fire pump engine will be designed to meet the limits in the applicable subparts.

1.4.3 MACT Limits

As discussed in Section 1.3.8 above, 40 CFR Part 63 Subparts GGGG, DDDDD and ZZZZ apply to the facility. The extraction process at the Decatur plant is already subject to Subpart GGGG. The expansion project does not affect the plant's status under the Veg Oil MACT standard. No new permit limits will apply to the facility in regards to this rule.

The new boiler will be subject to the Boiler MACT. The facility is already subject to it and has performed energy assessments. Other requirements of the rule – notifications, tune-ups, etc. – will be met as appropriate.

RICE units at the facility are subject to Subpart ZZZZ as will the new fire pump engine. Permit limits per the RICE MACT will apply.

BṺ́NGE

2.0 PSD APPLICABILITY EVALUATION

2.1 OVERVIEW OF PROJECT

Bunge North America is proposing to expand the Decatur, Alabama plant and is seeking authorization to make certain modifications to the facility that will increase the soybean processing capacity to 175,000 bushels per day (on a 12 month rolling average basis). The plant expansion proposed will include physical modifications of existing emissions units. There will also be emission units that will experience increased utilization as a result of the additional soybean processing. The emission units that are going to be physically modified as part of the expansion project were listed in Section 1.2.

The emission units that will not be modified but will experience direct increases in annual utilization as a result of the soybean capacity increase are as follows:

- Truck, Rail & Barge Receiving (RS-1a, RS-1b, RS-3b)
- Headhouse (RS-2)
- Grain Storage (RS-5a-g)
- Bean Cleaning (CD-1)
- Hulls Storage (MH-2c, MH-2e-f)
- Meal Loadout via Truck, Rail, and Barge (RS-3a, MH-4, MH-5)

Ancillary emission units that will not be modified but will experience indirect increases in annual utilization as a result of the expansion are:

• Boilers (BO3, BO4, BO6, REF 1&2, REF5)

The evaluation will show that the proposed project will only be subject to PSD permitting for VOCs and PM.

2.2 PERMITTING EVALUATION METHODOLOGY

The PSD program is applicable in attainment areas where there is a new major facility or a major modification at an existing major facility that results in a net significant emissions increase in any PSD pollutant. A major modification is a physical change or changes in method of operation at an existing source that exceeds the annual significant level as defined in ADEM Regulation 335-3-14-.04. Morgan County is attainment for all criteria pollutants.

The following sections discuss the methodology used in the project emissions increase evaluation conducted to assess PSD applicability. The net emissions increase for the modification was evaluated by comparing the baseline actual emissions to the projected actual emissions for the modified and debottlenecked emission sources included in the proposed expansion.

A hybrid test was used as some emission units were modified and new emissions units will be added. ADEM's PSD permitting regulations are detailed in ADEM Admin. Code 335-3-14-.04, *Air Permits Authorizing Construction in Clean Air Areas* (*Prevention of Significant Deterioration Permitting (PSD)*) and specifically 335-3-14-.04(1)(i) *Hybrid test for projects that involve multiple types of emissions units.*

2.3 BASELINE ACTUAL EMISSIONS

The start of construction for the expansion project is scheduled to take place in the fall of 2019. To conduct the permitting evaluation, an assessment of the baseline emissions was first performed. To determine the baseline emissions, the historical actual emissions have been reviewed. The facility is required to maintain records of the soybeans received and processed on a 12-month rolling total basis. Emissions are directly based on these numbers. Ten years of data prior to the anticipated permit application submittal date were reviewed and the period from 9/1/14 - 8/30/16 was chosen as the baseline period. Emissions and throughputs during this period were representative of current operating conditions.

The actual material throughputs for the selected 24 month period was averaged to determine the throughputs and used to determine the baseline emissions.

Emissions from both the modified and unmodified units are included below. Even though modifications are not being made to all the emission units at the facility, the sources listed below and in Section 2.1 will be affected by the future increase in the soybean processing capacity. These emissions increases must also be considered in the PSD evaluation so the baseline emissions from these sources are also determined. The same 24 month period was used to determine the emissions from these units. Fugitive emissions not captured by control devices are also included.

A summary of the baseline emissions is presented below. The emissions calculations and other assumptions are presented in Appendix A.

FUGITIVE EMISSIONS		PM	PM10	PM2.5	NOx	voc
		TPY	TPY	TPY	TPY	TPY
RAIL UNLOADING	RS-1a	5.55	1.35	0.23		
TRUCK UNLOADING	RS-1b	2.01	0.63	0.11		
BARGE UNLOADING	RS-3b	0.95	0.24	0.04		
BARGE LOADOUT	RS-3a	4.79	0.71	0.05		
MEAL TRUCK LOADOUT	MH-4	10.23	1.51	0.10		
MEAL RAIL LOADOUT	MH-5	2.72	0.40	0.03		
TOTAL :		26.3	4.8	0.6	0.0	0.0
POINT SOURCES						
TRUCK UNLOADING & SCREENINGS						
GRIND BH	RS-1b	0.37	0.37	0.063		
BARGE UNLOADING/LOADING			E .			
BAGHOUSE	RS-3a/3b	0.084	0.084	0.042		
HEADHOUSE	RS-2	0.65	0.65	0.32		
BEAN STORAGE TANKS	RS-5a-g	8.70	2.19	0.37		
CLEAN & SCALP	CD-1	0.63	0.63	0.32		
BEAN CONDITIONER	PR-6	3.25	1.95	0.73		
FLAKERS	PR-7	4.1	4.1	2.87		
EXTRACTION	EX-1	1]	639.0
DTDC	EX-2	6.39	6.39	2.41		
HULLS STORAGE	MH-2c	1.16	0.29	0.05		
PELLETED HULLS STORAGE	MH-2e-f	0.15	0.04	0.01		
MEAL TRUCK LOADOUT	MH-4	0.28	0.28	0.14		
MEAL RAIL LOADOUT	MH-5	0.05	0.05	0.03		
TOTAL		25.81	17.02	7.35	0.00	639

TABLE 1BASELINE ACTUAL EMISSIONS

2.4 PROJECTED ACTUAL EMISSIONS

The projected annual throughputs is based on the amount of soybeans expected to be processed after the expansion is complete. Bunge is requesting that the facility-wide soybean throughput be increased to 61,425,000 bushels per year during any consecutive twelve (12) month period.

To determine the projected actual emissions, the projected annual throughput given above, AP-42 emissions factors, and stack test data from similar Bunge facilities were used. Emissions from both the modified and unmodified units are included below. Even though modifications are not being made to all the emission units at the facility, they will be affected by the future increase in the soybean processing capacity. These emissions increases were considered in the PSD evaluation.

BŪ̇́NGE

Fugitive emissions not captured by control devices are also included. The evaluation took into consideration the two-week shutdown that the plant takes every year.

A new grain dryer will be installed to accommodate the additional soybeans processed as a result of the expansion. These emissions are based on a stack test provided by the manufacturer. In addition, an existing boiler (B05) will be replaced with a new, larger unit that will be able to supply the extra steam required to process the increased bean throughput.

A summary of the projected actual emissions is presented below. The emissions calculations and other assumptions are presented in Appendix A.

FUGITIVE EMISSIONS		PM TPY	PM10 TPY	PM2.5 TPY	NOx TPY	VOC TPY	CO2e TPY
RAIL UNLOADING	RS-1a	3.68	0.9	0.15			
	RS-IA	3.00	0.9	0.15			
TRUCK UNLOADING & SCREENINGS	RS-1b	2.67	0.83	0.14			
BARGE UNLOADING	RS-3b	7	1.77	0.14			
BARGE LOADING	RS-3a	12.19	1.81	0.23			
MEAL TRUCK LOADOUT	MH-4	13.21	1.96	0.12			
MEAL RAIL LOADOUT	MH-5	1.02	0.15	0.01			
TOTAL		39.8	7.4	0.8	0	0	
POINT SOURCES							
			1				
TRUCK UNLOADING & SCREENINGS							
GRIND BH	RS-1b	0.28	0.28	0.14			
BARGE UNLOADING BH	RS-3b	0.32	0.32	0.16			
BARGE LOADING BH	RS-3a	0.21	0.21	0.11			
HEADHOUSE	RS-2	0.32	0.32	0.16			
BEAN STORAGE TANKS	RS-5a-g	11.52	2.9	0.51			
CLEAN & SCALP	CD-1	1.29	1.29	0.65			
NEW GRAIN DRYER	CD-6	7.28	1.82	0.31	11.07	0.61	13310
VERTICAL BEAN CONDITIONER	PR-6	0.63	0.63	0.61			
FLAKERS	PR-7	5.37	5.37	2.69			
EXTRACTION	EX-1					985.6	
DT	EX-2	-	-	-			
DC	EX-2	11.39	11.39	4.29			
HULLS STORAGE	MH-2c	1.54	0.39	0.07			
PELLETED HULLS STORAGE	MH-2e-f	0.20	0.05	0.01			
MEAL TRUCK LOADOUT	MH-4	0.36	0.36	0.18			
MEAL RAIL LOADOUT	MH-5	0.02	0.02	0.01			
NEW DIESEL FIRE PUMP			0.03		0.47	0.04	16.5
TOTAL		40.7	25.4	9.9	11.5	986.3	13326.5

TABLE 2 PROJECTED ACTUAL EMISSIONS

BŪ́NGE

2.5 BASELINE ACTUAL TO PROJECTED ACTUAL EMISSIONS

The projected actual annual emissions given above were compared to the baseline actual emissions given in Table 1. The differences between the baseline and projected annual rates gives the estimated emissions increase used to evaluate PSD applicability. The table below summarizes the baseline actual to projected actual emissions. The emissions calculations and other assumptions are presented in Appendix A.

A portion of the projected actual emissions could have been accommodated (CHA) during the baseline period and are therefore, excludable from the projected emissions increase. The excludable emissions are from existing baghouses and cyclones using the same concentrations used for projected future emissions and were based on the same operating hours anticipated after the expansion. The emissions included in Table 3 below are a summary of Tables 1 and 2.

BASELINE	PM TPY	PM10 TPY	PM2.5 TPY	NOx TPY	VOC TPY	CO2e TPY
FUGITIVE	26.25	4.85	0.55	0.00	0.0	
POINT	25.81	17.02	7.35	0.00	639.0	
TOTAL	52.06	21.9	7.9	0.0	639.0	
FUTURE POTENTIALS						
FUGITIVE	39.77	7.42	0.78	0	0	
POINT	40.73	25.38	9.90	11.54	986.3	13326.5
TOTAL	80.50	32.8	10.7	11.5	986.3	13327

TABLE 3 BASELINE ACTUAL TO PROJECTED EMISSIONS

2.6 ADDITIONAL EMISSIONS INCREASES – ANCILLARY UNITS

In addition to the emissions increase associated with physically modified emission units and unmodified emission units affected by the expansion (seeing increased utilization), there will also be emission increases from ancillary emission units.

These units support the plant and are therefore affected by the expansion. The plant has 7 natural gas combustion units. One of the main boilers will be replaced in order to supply sufficient steam to the plant after the expansion is complete. The remaining boilers will also need to produce more steam for the processing of the additional soybean capacity and therefore the amount of natural gas combusted will increase after the expansion is complete. The increase in natural gas combusted is based on the amount of natural combusted per ton of bean processed in 2014-2015 multiplied by the future projected soybean processing rate. Fuel oil was not combusted in the boilers during this time and the plant can no longer burn fuel oil. Only natural gas can be combusted in the units.

BASELINE EMISSIONS		РМ	PM10	PM2.5	NOx	VOC	CO2e
		TPY	TPY	TPY	TPY	TPY	TPY
GEKA BOILERS	REF 1-2	0.30	0.30	0.30	3.88	0.21	4,671
BOILERS	BO3-4	3.09	3.09	3.09	19.21	2.23	48,839
BOILER BO5	BO5	1.54	1.54	1.54	9.60	1.12	24,420
GARIONI BOILER	REF5	0.08	0.08	0.00	0.42	0.06	1,256
AJAX HOT WATER HEATER	BO6	0.03	0.03	0.00	0.37	0.02	448
TOTAL		5.0	5.0	4.9	33.5	3.6	79635
PROJECTED EMISSIONS							
GEKA BOILERS	REF 1-2	0.43	0.43	0.43	5.66	0.31	6800
BOILERS	BO3-4	4.20	4.20	4.20	26.92	3.04	66458
NEW BOILER	BO5	2.55	2.55	2.55	16.31	1.84	40277
GARIONI	REF5	0.12	0.12	0.12	0.61	0.08	1828
AJAX HOT WATER HEATER	BO6	0.04	0.04	0.04	0.55	0.03	658
TOTAL		7.3	7.3	7.3	50.1	5.3	116021

TABLE 4BOILER EMISSIONS

2.7 EXPANSION PROJECT TOTAL EMISSIONS INCREASES

The baseline actual to projected actual emissions results are summarized in Table 5 below. The emissions calculations and other assumptions are presented in Appendix A. The PSD applicability analysis shows that the expansion project will result in a significant emissions increase for PM and VOCs and requires PSD review for these two pollutants. SO2 and CO are included in the emissions summary but do not trigger PSD review.

(Tables 3 & 4 Totals)	PM	PM10	PM2.5	NOx	VOC	CO2e
	TPY	TPY	TPY	TPY	TPY	TPY
BASELINE	57.1	26.9	12.8	33.5	642.7	79635
PROJECTED ACTUALS	87.8	40.1	18.0	61.6	991.6	129348
DIFFERENCES: FUTURE POTENTIALS - BASELINE	31	13.2	5.2	28.1	349	49,713
PSD THRESHOLDS	25	15	10	40	40	75,000

 TABLE 5

 TOTAL EXPANSION PROJECT EMISSIONS INCREASES

2.8 MODELED EMISSION RATES FOR PRECURSORS (MERPs) ASSESSMENT

As shown above, the VOC emissions from the expansion are above the Significant Emissions Rate (SER) of 40 tons per year found in ADEM's PSD regulations in ADEM Admin. Code 335-3-14-.04. The Applicable national Ambient Air Quality Standards (NAAQS) and the PSD increments are subject to air quality analysis in a typical review. However, no NAAQS or PSD increment exists for VOC but do for ozone. Ground level ozone is predominantly a secondary pollutant formed through photochemical reactions driven by emissions of NOx and VOCs in the presence of sunlight. Per the revised and updated 40 CFR Part 51, Appendix W, precursor emission impacts to ozone should be considered in the PSD analysis. To that end, EPA views the Modeled Emission Rates for Precursors (MERPs) as a type of Tier 1 demonstration tool that provides a simple way to relate maximum downwind impact with a critical air quality threshold.

2.8.1 VOC Precursor Assessment for O₃

EPA's modeling results of hypothetical sources are used to demonstrate that the air quality impacts of ozone from this project would be expected to be below the critical air quality thresholds. These MERPs are given in Table 7.1 in the draft Guidance on the Development of Modeled Emission Rates for Precursors as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program and are further discussed below.

Table 7.1 Most Conservative (Lowest) Illustrative MERP Values (tons per year)by Precursor*

Precursor	Area	8-hr O3
NOx	Eastern US	170
VOC	Eastern US	1159

*From Guidance Document

The estimated annual increases of VOC and NOX from the Decatur expansion project are:

VOCs – 349 tons per year NOx – 28.1 tons per year.

These rates are well below the values modeled by EPA given in Table 7.1 (the MERP) and therefore the air quality impacts are expected to be below the critical air quality threshold.

In addition, the NOx and VOC precursor contributions to the 8-hour daily maximum ozone are considered together to determine if the air quality impact would exceed the critical air quality threshold as shown below. A value less than 100% indicates that the critical air quality threshold will not be exceeded when considering the combined impacts.

(28.1 tpy NOX/170 tpy NOX 8-hr daily max O3 MERP) + (349 tpy VOC / 1159 VOC 8-hr daily max O3 MERP) x 100% = 46.64%

which is less than 100%. Therefore, the critical air quality threshold will not be exceeded.

2.8.2 Preconstruction Ambient Air Monitoring

The initial significant impact area (SIA) determination must also address preconstruction monitoring for sources that exceed the significant monitoring concentrations. There is no specific concentration prescribed for ozone, but for any source that will have an increase of 100 tons per year or more of VOCs, pre or post operation monitoring for ozone may be considered for any source that triggers PSD review for NOx or VOCs. The state has conducted monitoring for ozone and results are included in Appendix B.

2.9 ADDITIONAL IMPACT ANALYSIS - ADEM Admin. Code Regulation 335-3-14-.04(14)

The plant is proposing an increase from 56.575 mm bushels per 12 month rolling total to 61.425 mm bushels per 12 month rolling total. Bunge does not anticipate any impact on visibility, soils or vegetation that would occur as a result of this modification which is less than a 10% increase in the throughput of the plant.

APPENDIX A

POINT SOURCES	a	<u>PM</u>	PM10	PM2.5	PMcon		~~	~~		
0	State	Controlled	Controlled	Controlled	Controlled	<u>NOx</u>	<u>SOx</u>	<u>CO</u>		HAP's
Source name	Source #	(Tons/Yr)	(Tons/Yr)	(Tons/Yr) 0.063	(Tons/Yr)	(Tons/Yr) 0.00	(Tons/Yr) 0.00	(Tons/Yr) 0.00	(Tons/Yr) 0.00	(Tons/Yr) 0.00
TRUCK UNLOADING & SCREENINGS	RS-1b	0.37	0.37	0.003		0.00	0.00	0.00	0.00	0.00
GRIND BH BARGE UNLDNG/LOADNG BAGHOUSE	RS-3a/3b	0.084	0.084	0.042		0.00	0.00	0.00	0.00	0.00
HEADHOUSE	RS-2	0.65 8.70	0.65 2.19	0.324 0.373		0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
BEAN TANKS - 7	RS-5 a - g	8.70 0.63	0.63	0.373		0.00	0.00	0.00	0.00	0.00
CLEAN & SCALP	CD-1 CD-2	16.2	4.0	0.688	1.0	18.2	0.00	15.3	1.0	0.00
GRAIN DRYER TEMPORING/DAY TANKS	CD-2 CD-3	0.124	4.0 0.124	0.068	1.0	10.2	0.11	15.5	1.0	
PRIMARY DEHULL FILTER	PR-1	1.62	1.62	0.812		0.00	0.00	0.00	0.00	0.00
DEHULLING & ASPIRATOR FILTER	PR-2	1.62	1.62	0.812		0.00	0.00	0.00	0.00	0.00
CRACKING/CONVEY FILTER	PR-4	0.36	0.36	0.182						
CONDITIONING	PR-6	3.25	1.95	0.734		0.00	0.00	0.00	0.00	0.00
HULL GRIND	PR-5	0.58	0.58	0.289		0.00	0.00	0.00	0.00	0.00
FLAKING	PR-7	4.1	4.1	2.867		0.00	0.00	0.00	0.00	0.00
EXTRACTOR, EVAP/COND, OIL	EX-1	0.00	0.00	0.000		0.00	0.00	0.00	639.0	409.0
STRIPPER, HEX STOR. TANKS								-	-	
MEAL DRY & COOL	EX-2	6.39	6.39	2.410		0.00	0.00	0.00	0.0	0.0
SHIFT RUN TANKS	EX-3 a - f	0.00	0.00	0.000		0.0	0.00	0.0	0.00	0.00
CRUDE OIL STORAGE	EX-4a-f	0.00	0.00	0.000		0.0	0.00	0.0	0.00	0.00
MEAL GRIND & ADDITIVE TANK	MH-1	0.44	0.44	0.219		0.00	0.00	0.00	0.00	0.00
HULL PELLET COOLER	MH-3	1.16	1.16	0.809		0.00	0.00	0.00	0.00	0.00
HULLS STORAGE BIN	MH-2 c	1.159	0.292	0.050		0.00	0.00	0.00	0.00	0.00
PELLETTED HULLS STORAGE BINS (2)	MH-2 e-f	0.153	0.037	0.0063		0.00	0.00	0.00	0.00	0.00
MEAL STORAGE BIN	MH-2 g	0.073	0.073	0.037		0.00	0.00	0.00	0.00	0.00
HULL REC FILTER	MH-6	0.020	0.020	0.010		0.00	0.00	0.00	0.00	0.00
MEAL TRUCK LOADOUT	MH-4	0.28	0.28	0.139		0.00	0.00	0.00	0.00	0.00
MEAL RAIL LOADOUT	MH-5	0.051	0.051	0.025		0.00	0.00	0.00	0.00	0.00
MEAL HOUSE & LOADOUT & STORAGE	MH-7	1.14	1.14	0.571		0.00	0.00	0.00	0.00	0.00
(b) BINS		0.00		0.005	0.00		0.000	0.00	0.04	
GEKA BOILER	REF1 & 2	0.30	0.30	0.295	0.22	3.88	0.023	3.26	0.21	
	REF-3 REF-4	0.00	0.00 0.00018	0.000 0.000		0.0 0.00	0.00 0.00	0.0 0.00	0.0 0.00	0.0 0.00
NO 1 SILO - BLEACHING CLAY	REF-4 REF-5	0.00018 0.079	0.00018	0.000	0.060	0.00	0.00	0.00	0.00	0.00
GARIONI NAVAL BOILER NO 2 SILO - FILTER AID	REF-5	0.00006	0.00006	0.000	0.000	0.418	0.0003	0.88	0.057	0.00
NO. 3 SILO BLEACHING CLAY	REF-7	0.00018	0.00018	0.000		0.00	0.00	0.00	0.00	0.00
NGAS/OIL BOILER	BO3, 4 & 5	4.63	4.63	4.630	3.47	28.81	0.37	51.2	3.35	
NATURAL GAS WATER HEATER - PKG	BO6	0.028	0.028		0.021	0.373	0.0022	0.31	0.020	
TOTAL Point Source Emissions:		54.84	33.92	16.88	4.81	51.70	0.51	70.94	643.69	408.99
FUGITIVE EMISSIONS										
		РМ	PM10	PM2.5					VOCs	HAPs
Source name		(Tons/Yr)	(Tons/Yr)	(Tons/Yr)					(Tons/Yr)	(Tons/Yr)
RAIL UNLOADING	RS-1a	5.55	1.35	0.230					0.00	0.00
TRUCK UNLOADING & SCREENINGS										
GRIND	RS-1b	2.01	0.63	0.106					0.00	0.00
BARGE UNLOADING	RS-3b	0.95	0.24	0.041					0.00	0.00
BARGE LOADING	RS-3a	4.79	0.71	0.048						
MEAL TRUCK LOADOUT	MH-4	10.23	1.51	0.101						
MEAL RAIL LOADOUT	MH-5	2.72	0.40	0.027	_			_	0.00	0.00
TOTAL Fugitive Emissions:		26.3	4.8	0.6					0.0	0.0
					Page 1 of 1					

Bunge North America, Inc. DECATUR, AL PSD PERMIT APPLICATION

		Projected Actual Emissions											
		PM	PM10	PM2.5	SO ₂	NOx	со	VOC	n-Hexane	CO ₂	N ₂ O	Methane	CO _{2e}
EU#	Emission Unit Description	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)
19. 19. 19. 19	RECEIVING & STORAGE												
RS-1a	Rail Unloading Pits - Fugitives	3.68	0.90	0.15									
RS-1b	Truck Unloading Pits:												
All the Balling	Baghouse Emissions	0.28	0.28	0.14									
	Fugitive Emissions Headhouse to Storage Tanks, Elevator	2.67	0.83	0.14									
RS-2	Legs, Belt Conveyor to Storage	0.32	0.32	0.16									
RS-3a	Barge Loading:												
	Barge Loading Fugitive	12.19	1.81	0.12									
学校推荐了	Baghouse Emissions	0.21	0.21	0.11									
RS-3b	Barge Unloading and Aspiration of Unloading to Baghouse	0.32	0.32	0.16									
	Barge Receiving Fugitive	7.00	1.77	0.23									
RS-5a-g	Soybean Storage Tanks	11.52	2.90	0.51									
	CLEANING & DRYING												
CD-1	Cleaning and Process Tanks w/Dust System Collector	1.29	1.29	0.65									
CD-2	Law-Marrot Grain Dryer	16.18	4.05	0.69	0.11	18.22	15.31	1.00	0.33	22,846	0.122	0.438	22,893
CD-6	New Grain Dryer	7.28	1.82	0.31	0.07	11.07	9.30	0.61	0.20	13,283	0.071	0.255	13,310
CD-3	Temporing/Day Tanks w/baghouse	0.12	0.12	0.06									
	BEAN PREP												
PR-1	Dehulling Aspiration #1	1.62	1.62	0.81									
PR-2	Dehulling Aspiration #2	1.62	1.62	0.81									
PR-4	Cracking Aspiration	0.36	0.36	0.18									
PR-6	Vertical Bean Conditioner - New	0.63	0.63	0.61									
PR-5	Hull Grind	0.58	0.58	0.29									
PR-7	Flaking - w/new Baghouse & Fan	5.37	5.37	2.69									
ALL STREET	BOILER HOUSE												
BO-3	Natl Gas Boiler	2.10	2.10	2.10	0.17	13.46	23.21	1.52	0.50	33,161	0.177	0.636	33,229
BO-4	Natl Gas Boiler	2.10	2.10	2.10	0.17	13.46	23.21	1.52	0.50	33,161	0.177	0.636	33,229
BO-5	New Natural Gas Fired Boiler	2.55	2.55	2.55	0.20	16.31	28.14	1.84	0.60	40,195	0.214	0.770	40,277
BO-6	Hot Water Heater (5.25 MMBH - Packaging)	0.04	0.04	0.04	0.00	0.55	0.46	0.03	0.01	657	0.004	0.013	658

	•				0							0	
						P	rojected	Actual Er	nissions				
EU#	Emission Unit Description	PM (ton/yr)	PM10 (ton/yr)	PM2.5 (ton/yr)	SO ₂ (ton/yr)	NOx (ton/yr)	CO (ton/yr)	VOC (ton/yr)	n-Hexane (ton/yr)	CO ₂ (ton/yr)	N ₂ O (ton/yr)	Methane (ton/yr)	CO _{2e} (ton/yr)
	SOLVENT EXTRACTION											,	
EX-1	EXTRACTOR, NEW EVAP/COND,OIL STRIPPER, HEX STOR. TANKS							985.6	630.8				
EX-2	MEAL DRY & COOL (DC) D1 New	0.70	0.70	0.26									
EX-2	MEAL DRY & COOL (DC) D2 New	0.70	0.70	0.26									
EX-2	MEAL DRY & COOL (DC) D3 New	1.98	1.98	0.75									
EX-2	MEAL DRY & COOL (DC) D4 New	1.98	1.98	0.75									
EX-2	MEAL DRY & COOL (DC) C1 New	3.01	3.01	1.13									
EX-2	MEAL DRY & COOL (DC) C2 New	3.01	3.01	1.13									
EX-3-4	CRUDE OIL TANKS - Insig. Activities	0.01	0.01										
	MEAL HANDLING												
MH-1	MEAL GRIND & ADDITIVE TANK w/BH	0.44	0.44	0.22									
MH-2c	HULLS STORAGE TANK	1.54	0.39	0.068									
MH-2e-f	PELLETTED HULLS STORAGE BINS (2)	0.203	0.049	0.008									
MH-2g	MEAL STORAGE BIN	0.073	0.073	0.037									
MH-3	HULL PELLET COOLER W/CYCLONE	1.16	1.16	0.81									
MH-4	MEAL TRUCK LOADOUT w/BAGHOUSE	0.36	0.36	0.18									
MH-4	Fugitive Emissions	13.21	1.96	0.13									
MH-5	MEAL RAIL LOADOUT w/BAGHOUSE	0.02	0.02	0.01									
MH-5	Fugitive Emissions	1.02	0.15	0.01									
MH-6	HULL REC CYCLONE W/FILTER	0.020	0.020	0.01									
MH-7	MEAL HOUSE & LOADOUT & STORAGE BINS	1.14	1.14	0.57									
	REFINERY												
REF-1	GEKA BOILER	0.21	0.21	0.21	0.02	2.83	2.38	0.16	0.05	3,393	0.02	0.065	3,400
REF-2	GEKA BOILER	0.21	0.21	0.21	0.02	2.83	2.38	0.16	0.05	3,393	0.02	0.065	3,400
REF-3	REFINERY					VOCs II	NCLUDED	IN EXTRA	CTOR EMIS	SIONS			
REF-4	NO 1 SILO - BLEACHING CLAY	0.0002	0.0002	0.0001									
REF-6	NO 2 SILO - DE	0.0001	0.0001	0.0000									
REF-5	GARIONI STEAM GENERATOR (5 mbh)	0.12	0.12	0.12	0.01	0.61	1.28	0.08	0.03	1,824	0.01	0.035	1,828
REF-7	NO. 3 SILO - BLEACHING CLAY	0.0002	0.0002	0.0001									
URS CONTRACT	Diesel Fire Pumps		0.18		0.16	2.48	0.54	0.20					
	Cooling Tower - Extraction	0.26	0.06	0.03									
	Cooling Tower - Refinery	0.26	0.06	0.03									

Existing sources New or modified sources

Baghouses on these sources were swapped

Bunge North America, Inc. DECATUR, AL PSD PERMIT APPLICATION

A STATE								
U#	Emission Unit Description							
	RECEIVING & STORAGE							
RS-1a	Rail Unloading Pits - Fugitives							
RS-1b	Truck Unloading Pits:							
	Baghouse Emissions							
	Fugitive Emissions							
RS-2	Headhouse to Storage Tanks, Elevator							
de la compañía	Legs, Belt Conveyor to Storage							
RS-3a	Barge Loading:							
	Barge Loading Fugitive							
	Baghouse Emissions							
RS-3b	Barge Unloading and Aspiration of							
	Unloading to Baghouse							
	Barge Receiving Fugitive							
RS-5a-g	Soybean Storage Tanks							
	CLEANING & DRYING							
CD-1	Cleaning and Process Tanks w/Dust							
	System Collector							
CD-2	Law-Marrot Grain Dryer							
CD-6	New Grain Dryer							
CD-3	Temporing/Day Tanks w/baghouse							
	BEAN PREP							
PR-1	Dehulling Aspiration #1							
PR-2	Dehulling Aspiration #2							
PR-4	Cracking Aspiration							
PR-6	Vertical Bean Conditioner - New							
PR-5	Hull Grind							
PR-7	Flaking - w/new Baghouse & Fan							
	BOILER HOUSE							
BO-3	Natl Gas Boiler							
BO-4	Natl Gas Boiler							
BO-5	New Natural Gas Fired Boiler							
BO-6	Hot Water Heater (5.25 MMBH - Packaging)							

Contraction and

Stack Parameters											
	Stack										
Stack	Diameter	Stack	E	Exit	Exit						
Height	(in)	Discharge	Exhaust Flow	Velocity	Temperature						
(ft)	(inches)	(h, ov, uv)	(acfm)	(fps)	(°F)						
Fugitive Du	st Emissions				Ambient						
10	30	vertical	27,713	73.7	Ambient						
Fugitive Tru	uck Receiving	Emissions									
130	18" x 23"	vertical	12,419	72.0	Ambient						
Fugitive Ba	rge Loading I	Emissions									
15	20" x 20"		10,000	60.0	Ambient						
			15,000		Ambient						
Fugitive Ba	rge Receiving	g Emissions									
Squares:	Squares:										
97'	56" x 56"				Ambient						
Rounds: 91'	Rounds: 30" diam										
91	30° diam										
10	20" x 20"	vertical	25,310	151.9	Ambient						
95.3	4 @ 3'x5'	vertical	270,000	75.0	110						
95.3			110								
			2,400		Ambient						
10	20" x 20"		45,000	270.0	Ambient						
10	20" x 20"		45,000	270.0	Ambient						
6	18" x 23"		10,080	58.4	Ambient						
64.8	13	vertical	4,050		140						
16	36		16,000	37.7	Ambient						
10	40" x 40"	vertical	40,000	60.0	140						
55	42		24,385		116						
55	42		24,385		116						
55	42		29,550		116						
49	18		1,100		250						

EU#	Emission Unit Description
	SOLVENT EXTRACTION
EX-1	EXTRACTOR, NEW EVAP/COND,OIL STRIPPER, HEX STOR. TANKS
EX-2	MEAL DRY & COOL (DC) D1 New
EX-2	MEAL DRY & COOL (DC) D2 New
EX-2	MEAL DRY & COOL (DC) D3 New
EX-2	MEAL DRY & COOL (DC) D4 New
EX-2	MEAL DRY & COOL (DC) C1 New
EX-2	MEAL DRY & COOL (DC) C2 New
EX-3-4	CRUDE OIL TANKS - Insig. Activities
	MEAL HANDLING
MH-1	MEAL GRIND & ADDITIVE TANK W/BH
MH-2c	HULLS STORAGE TANK
MH-2e-f	PELLETTED HULLS STORAGE BINS (2)
MH-2g	MEAL STORAGE BIN
MH-3	HULL PELLET COOLER W/CYCLONE
MH-4	MEAL TRUCK LOADOUT w/BAGHOUSE
MH-4	Fugitive Emissions MEAL RAIL LOADOUT W/BAGHOUSE
MH-5	Fugitive Emissions
MH-5	HULL REC CYCLONE W/FILTER
MH-6	MEAL HOUSE & LOADOUT & STORAGE
MH-7	BINS
	REFINERY
REF-1	GEKA BOILER
REF-2	GEKA BOILER
REF-3	REFINERY
REF-4	NO 1 SILO - BLEACHING CLAY
REF-6	NO 2 SILO - DE
REF-5	GARIONI STEAM GENERATOR (5 mbh)
REF-7	NO. 3 SILO - BLEACHING CLAY
198-498 S. S.	Diesel Fire Pumps
	Cooling Tower - Extraction
	Cooling Tower - Refinery
	Existing sources

		Stack P	arameters		
Stack Height	Stack Diameter (in)	Stack Discharge	Exhaust Flow	Exit Velocity	Exit Temperature
(ft)	(inches)	(h, ov, uv)	(acfm)	(fps)	(°F)
60	6		350	30.0	90
44	30	vertical	17,500	59.4	158
44	30	vertical	17,500	59.4	140
41	30	vertical	17,500	59.4	127.4
41	30	vertical	17,500	59.4	122
41	30	vertical	17,500	59.4	102.2
41	30	vertical	17,500	59.4	98.6
10	20" x 20"		17,800	106.8	Ambient
No stack -					Ambient
lo stack -	bin vents				Ambient
120	12"		1,800		Ambient
8.5	20" x 26"		8,000	37.0	Ambient
12	34" x 39"		30,000	54.3	Ambient
12	34" x 39"		30,000	54.3	Ambient
110	7.92		900	44.0	Ambient
12	33		28,000	78.6	Ambient
33	24"	vertical w/ cap	10,400		700
33	24"	vertical w/ cap	10,400		700
80	12" x 12"	horizontal	1,100		ambient
80	12" x 12"	horizontal	1,100		ambient
33	12"	vertical w/ cap	2,600		700
80	12" x 12"	horizontal	1,100		ambient
6	8"	horizontal	1,400		961
34	3 @ 225"	vertical	1,307,000		90
28	4 @ 192"	vertical	1,270,000		90

New or modified sources

Baghouses on these sources were swapped

FUTURE POTENTIAL EMISSIONS ESTIMATE

21-Feb-19

BUNGE NORTH AMERICA, INC.

1400 Market St NE, Decatur, AL Facility ID: 712-0026

PM2.5

0.0100 lb/ton

Percentage Hopper Bottom

Percentage Straight Truck

AP-42, Table 9.9.1-1

50%

50%

	Oper	ation time	Produ	iction	Conversion	Factors		
	Concerning of the local division of the loca	hr/yr	175,000		Soybeans	60	lb/bushel	
						56	lb/bushel	
	301	days/yr	61425000		Soybean Meats			
			1,842,750	ion/yr	Soybean Hulls	4	lb/bushel	
					Hull Pellets	4	lb/bushel	
					Soybean Meal	45	lb/bushel	
					Soybean Oil	11.5	lb/bushel	
The followin	g equation	ns were used	for the emission	ons calculat	ions below.			
lb/hr= EF lb/	ton x TP t	on/hr; ton/yr =	EF lb/ton x TF	o ton/yr x 1/	2000			
lb/hr= G x Q	x 60/7000	O; ton/yr = G	x Q x 60/7000>	H hr/year/	2000			
lb/hr= EF lb/	ton x TP t	on/hr x (1-Cpl	E/100); ton/yr =	EF lb/ton	x TP ton/yr x (1-CpE	/100)		
Rail Unload	lina Pits							
RS-1a								
	Trans	fer Rate/hour	375	tons/hr				
		trol Efficiency			due to shed enclo	sure		
	001	Operation		hours/year		Juio		
	A	al Throughput			based on project	ad reaciets fro	m oach mod	lo of receipt
	Annua	ai mougnpui	302,907	ton/year	based on project	ed receipts no	in each mou	le of receipt
Emission F	actors							
		Units	Basis					
PM	0.032	lb/ton	AP-42, Table					
PM10	0.0078	lb/ton	AP-42, Table	9.9.1-1				
PM2.5	0.0013	lb/ton	AP-42, Table	9.9.1-1				
			PM	PM10	PM2.5	PM	PM10	PM2.5
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontrolle	ed Potent	ial	12.00	2.93	0.49	6.13	1.49	0.25
Fugitive En	nissions		7.20	1.76	0.29	3.68	0.90	0.15
Truck Unio	ading Pits	5						
RS-1b		1 A						
Maxin	num Trans	sfer Rate/hour	375	tons/hr				
Aver	age Trans	sfer Rate/hour	375	tons/hr				
	Capt	ture Efficiency	95	%	shed enclosure a	nd aspiration		
		Operation		hours/vear				
	Annu	al Throughput			based on project	ed receipts fro	m each mod	le of receipt
		Grain Loading		grain/dscf				er 1999 @ 90% CL
B		an Flow Rate			Dean Receiving 1	CSt. Oburion E		
Di		5:PM10 Ratio			conservatively base	d on hadhous	e stack test	data
	1 1012	on mile rate	0.0000	controlled.	conscivatively susc	a on bagnoad	e otdok toot	dutu
Emission F	actore							
Truck Rece		Unite	Peole					
Hopper Bott		Units	Basis	0014				
PM	0.035	lb/ton	AP-42, Table					
PM10	0.0078	lb/ton	AP-42, Table					
PM2.5	0.0013	lb/ton	AP-42, Table	9.9.1-1				
Straight Tru		Units	Basis					
PM	0.180	lb/ton	AP-42, Table					
PM10	0.0590	lb/ton	AP-42, Table	9.9.1-1				
D1 10 5	0.0400	11-11-	AD 40 T.I.	0044				

Enter the percentage of hopper bottom trucks vs straight trucks.

Combine PM PM10 PM2.5	d 0.108 0.033 0.006	Units Ib/ton Ib/ton Ib/ton	Basis Calculated Calculated Calculated					
			PM	PM10	PM2.5	PM	PM10	PM2.5
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontro	olled Potent	ial	40.31	12.53	2.12	53.36	16.58	2.80
Baghous	e Emission	S	0.17	0.17	0.08	0.28	0.28	0.14
	Emissions		2.02	0.63	0.11	2.67	0.83	0.14
	ise to Stora	ge Tank, Con	veyor, Scales	and Boot	Aspiration			
RS-2 Ma	ximum Trans	sfer Rate/hour	1125	tons/hr	Based on maxim	um receivina i	rate from truck	k, rail and barge
A	verage Trans	sfer Rate/hour		tons/hr	Only receiving fr			,
	-	ture Efficiency			completely enclo			
		Operation		hours/year				
	Annu	al Throughput						
		Grain Loading	Contraction Contraction and Contraction		Bean Receiving	Test: Council	Bluffs Octobe	ar 1000.
		Fan Flow Rate			WAS GRAIN CL			1000.
	-	.5:PM10 Ratio			conservatively bas			data
Emicale			0.0000		content turitory buo			
	n Factors	Units	Basis					
PM	0.061	lb/ton	AP-42, Table	9.9.1-1				
PM10	0.0340	lb/ton	AP-42, Table	9.9.1-1				
PM2.5	0.0058	lb/ton	AP-42, Table	9.9.1-1				
			PM	PM10	PM2.5	PM	PM10	PM2.5
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontro	olled Potent	tial	68.63	38.25	6.53	56.20	31.33	5.34
	se Emission		0.08	0.08	0.038	0.32	0.32	0.16
	ximum Trans	sfer Rate/hour sfer Rate/hour		tons/hr tons/hr	maxiumum rate o	due to reposition	oning barges	
<u>^</u>	-	ture Efficiency	80	%	aspiration captur	e		
	A	Operation		hours/year		ad reacists for	m oook med	of reaciet
		al Throughput			based on project			e of receipt
		Grain Loading an Flow Rate		grain/dscf	expected exhaus	si concentratio	11	
	-	.5:PM10 Ratio			conservatively bas	ed on baghou	se stack test o	data
	n Factors							
Barge R	eceiving	Unite	Raeie					
PM	0.150	Units lb/ton	Basis AP-42, Table	0011				
PM10	0.0380	lb/ton	AP-42, Table					
PM2.5	0.0050	lb/ton	AP-42, Table	9.9.1-1				
			PM	PM10	PM2.5	PM	PM10	PM2.5
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontre	olled Potent	tial	56.25	14.25	1.88	35.02	8.87	1.17
	Emissions	The second second	11.25	2.85	0.38	7.00	1.77	0.23
	se Emission	IS	0.26	0.26	0.13	0.32	0.32	0.16
Ma	verage Tran	sfer Rate/hour sfer Rate/hour ture Efficiency	147 80		maxiumum rate of aspiration captur		oning barges	
	1317 143	Operation		hours/year				
	Annu	al Throughput	451,474	ton/year	based on project	ed loadout by	each mode o	f transportation

	Emission Facto	ors							
			Units	Basis					
	PM 0.	270	lb/ton	AP-42, Table	9.11.1-1				
	PM10 0.0	0400	lb/ton	AIRS Mar 19	90 SCC 3-0	2-007-91			
	PM2.5 0.0	0268	lb/ton	Per PM Calc	ulator PM2.	5:PM10 ratio of 0.0	67		
				PM	PM10	PM2.5	PM	PM10	PM2.5
				(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
	Uncontrolled P	otential		39.69	5.88	0.39	60.95	9.03	0.60
	Fugitive Emiss			7.94	1.18	0.08	12.19	1.81	0.12
	Baghouse Emi								
			peration		hours/year				
			Loading	0.000583		Meal Loadout Te	est: Council Blu	uffs, June 200	6
	Bagho	ouse Fan F							
		PM2.5:PM	110 Ratio	0.5000	controlled:	conservatively bas	ed on baghou	se stack test o	data
				PM	PM10	PM2.5	PM	PM10	PM2.5
				(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
	Baghouse Emi	ssions		0.05	0.05	0.02	0.21	0.21	0.11
	Dugnouse Enn	3310113		0.00	0.00	0.02	0.21	0.21	0.11
	Soybean Stora	ge Tanks							
	RS-5a-g								
		Transfer F			tons/hr	Based on convey	ying rate		
	Average	Transfer F			tons/hr	due to settling ch	ambor action	in hin hocaus	o of boight
		Capture E	Efficiency			and size of silos	annuer action	in bin becaus	e of neight
			peration		hours/year	and size of silos			
		Annual Th							
		Annual In	lloughput	1,042,750	ton/year				
	Emission Facto	ors							
			<u>Units</u>	Basis					
1	PM 0.	.025	lb/ton	AP-42, Table	9.9.1-1				
	PM10 0.0	0063	lb/ton	AP-42, Table	9.9.1-1				
	PM2.5 0.0	0011	lb/ton	AP-42, Table	9.9.1-1				
				PM	PM10	PM2.5	PM	PM10	PM2.5
				(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
	Uncontrolled P	otential		9.38	2.36	0.41	23.03	5.80	1.01
	Bin Vent Emiss			4.69	1.18	0.21	11.52	2.90	0.51
			Section .						
	Scalping, Scree	ening, Dec	ck Cleane	er and Proces	s Bin Asp	iration			
	and the second	Transfer F	Rate/hour	450	tons/hr				
	maannann		Efficiency			completely enclo	sed aspiration	system	
			peration		hours/year	completely enois	occ copilation	System	
		Annual Th							
			Loading			PM emission bas	sis: Bean Clea	ning Council I	Bluffs Nov 2008
	Bagho	ouse Fan F				WAS HEADHOU			514110, 1101 2000
	20.9.10	PM2.5:PM				conservatively bas			data
	- Aller								
	Emission Factor	ors	Unito	Reale					
	PM 0	.075	Units lb/ton	Basis AP-42, Table	0011				
		0190	lb/ton	AP-42, Table AP-42, Table					
		0032	lb/ton	AP-42, Table AP-42, Table					
	FIVIZ.5 0.1	0032	ID/ION	AF-42, 1 able	3.3.1-1				
				PM	PM10	PM2.5	PM	PM10	PM2.5
				(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
	Uncontrolled P	otential		33.75	8.55	1.44	69.10	17.51	2.95
	Baghouse Emi	ssions		0.31	0.31	0.15	1.29	1.29	0.65
					1				

	rot Grain Dry	er							
CD-2									
Ma	te Emissions ximum Transfo verage Transfo	er Rate/hour er Rate/hour Operation	250 8424	tons/hr tons/hr hours/year					
	PM G PM10 G	I Throughput rain Loading rain Loading rain Loading	0.00166	f ton/year grain/dscf grain/dscf grain/dscf	from stack test AP42 PM:PM10 AP42 PM10:PM) ratio	by manufacture	ər	
	Baghouse Fa	in Flow Rate	270,000	scfm					
Emission	n Factors								
		Units	Basis	0011					
PM PM10 PM2.5	0.220 0.0550 0.0094	lb/ton lb/ton lb/ton	AP-42, Tabl AP-42, Tabl AP-42, Tabl	e 9.9.1-1					
			PM	PM10	PM2.5	PM	PM10	PM2.5	
Uncontro	olled Potentia	d.	(lb/hr) 55.00	(lb/hr) 13.75	(lb/hr) 2.35	(ton/yr) 153.04	(ton/yr) 38.26	(ton/yr) 6.54	
Potential			3.842	0.960	0.163	16.18	4.05	0.69	
Combus	tion Emissior	ıs							
	Heat Co	ntent of Fuel		MMBtu/MM0	CF	Natural Gas			
		put Capacity		MMBtu/hr					
	Maximum	operation		MMCF/hr hours/year					
				MMCF/yr					
Emission	Factors (lb/M	MCF)							
PM	PM10	PM2.5	SO ₂	NOx	CO	VOC	n-hexane		
- Emission	- factors for na	- tural das con	0.6	100.0 from AP42_T	84 ables 1.4-1,-2,-3,	5.5 July 1998	1.8		
	sions are cove				abies 1. 4 -1,-2,-0,	July 1990			
		PM	PM10	PM2.5	SO2	NOx	co	VOC	n-hexane
	rly (lb/hr)	55.00	13.75	2.35	0.027	4.52	3.80	0.25	0.08
Max Ann	ual (tpy)	16.18	4.05	0.69	0.11	18.22	15.31	1.00	0.33
	use Gasses								
Emission CO ₂	Factors (lb/M N ₂ O	MCF) Methane	CO ₂	ming Potentia N ₂ O	Methane				
120,000		2.3	1.0	310	21				
		CO ₂	N ₂ O	Methane	CO _{2e}				
	rly (lb/hr)	5,424	0.029	0.104	5,435				
Max Ann	ual (tpy)	22,846	0.122	0.44	22,893				
Law-Mar	rot Grain Dry	er - NEW							
Particula	te Emissions								
	ximum Transf			tons/hr	design rate of u	pgraded dryer			
A	verage Transf Captu	er Rate/hour re Efficiency		tons/hr	completely encl	osed aspiration	n system		
	Sapta	Operation		hours/year	Will be used to	dry additional a	annual through	put. Assume	
					90% of current of Assumes the m			drver is half o	f the annual
		Throughput		ton/year	throughput.				
		rain Loading		grain/dscf	from stack test		by manufacture	er	
		rain Loading rain Loading		grain/dscf grain/dscf	AP42 PM:PM10 AP42 PM10:PM				
	Baghouse Fa								

Emission	Factors								
PM PM10 PM2.5	0.220 0.0550 0.0094	<u>Units</u> Ib/ton Ib/ton Ib/ton	Basis AP-42, Table AP-42, Table AP-42, Table	9.9.1-1					
Potential			PM (lb/hr) 1.921	PM10 (lb/hr) 0.480	PM2.5 (lb/hr) 0.082	PM (ton/yr) 7.28	PM10 (ton/yr) 1.82	PM2.5 (ton/yr) 0.31	
	on Emissio								
Hea	Heat Ir	Natural Gas put Capacity n Firing Rate Operation	29.2 0.0292 7581.6	MMBtu/MM MMBtu/hr MMCF/hr hours/year MMCF/yr	ICF				
Emission F	actors (lb/M	IMCF)							
PM - Emission fa	PM10 - actors for na	PM2.5 - atural gas con			CO 84 Tables 1.4-1,-2,-3, J	VOC 5.5 July 1998	n-hexane 1.8		
PM emission	ons are cove	ered in dryer	PM emissions	3					
Max Hourl Max Annu		<u>PM</u> 1.92 7.28	<u>PM10</u> 0.48 1.82	PM2.5 0.08 0.31	<u>SO</u> 2 0.018 0.07	<u>NOx</u> 2.92 11.07	<u>CO</u> 2.45 9.30	<u>voc</u> 0.16 0.61	<u>n-hexane</u> 0.05 0.20
Greenhous	Gasses								
	actors (Ib/N	IMCF)	Global Warn	ning Potenti	al				
CO ₂ 120,000	N ₂ O 0.64	Methane 2.3	CO ₂ 1.0	N₂O 310	Methane 21				
,									
Max Hourl Max Annu		<u>CO₂</u> 3,504 13,283	<u>N₂O</u> 0.019 0.1	<u>Methane</u> 0.067 0.3	<u>CO2</u> 3,511 13,310				
								la contratana	
CD-3	g/Day Tank	5	NEW TANK	WILL BE A	SPIRATED TO CD-	3 - There Will	be no increase	e in emissions.	
	erage Trans	fer Rate/hour fer Rate/hour ure Efficiency	450 100		completely enclo	sed aspiratior	n system		
		Operation I Throughput	1,391,277						
E		Brain Loading an Flow Rate		gr/cfm scfm	PM emission bas	sis: Bean Clea	aning Council E	Bluffs, Nov. 2008	
		5:PM10 Ratio			conservatively base	ed on baghou	ise stack test d	lata	
Baghouse	Emissions	6	PM (lb/hr) 0.03	PM10 (lb/hr) 0.03	PM2.5 (lb/hr) 0.01	PM (ton/yr) 0.12	PM10 (ton/yr) 0.12	PM2.5 (ton/yr) 0.06	
PR-1	Aspiration	<u>#1</u>							
		fer Rate/hour fer Rate/hour		tons/hr tons/hr					
		Ure Efficiency Operation al Throughput	8424	hours/year	completely enclo	sed aspiratior	n system		
	G	Grain Loading	0.00100	gr/scf	PM emission Del	hulling stack t	est Council Blu	uffs, Oct. 1999	
C	-	an Flow Rate 5:PM10 Ratio			conservatively base	ed on baghou	ise stack test d	lata	

Emission	actors							
PM PM10 PM2.5	0.360 0.360 0.0240	<u>Units</u> Ib/ton Ib/ton Ib/ton	Basis AP-42, Table AP-42, Table AP-42, Table	9.11.1-1				
	to Baghous		PM (lb/hr) 78.75 0.39	PM10 (lb/hr) 78.75 0.39	PM2.5 (lb/hr) 5.25 0.19	PM (ton/yr) 331.70 1.62	PM10 (ton/yr) 331.70 1.62	PM2.5 (ton/yr) 22.11 0.81
	Aspiration #	<u>#2</u>						
	rage Transfe Captu	er Rate/hour er Rate/hour re Efficiency Operation Throughput	219 100 8424	hours/year	completely encl	osed aspiration	system	
В	Gi aghouse Fa	rain Loading in Flow Rate PM10 Ratio	0.00100 45,000	gr/scf scfm	PM emission De conservatively ba			
Emission I			0.0000	controlled.				
PM PM10 PM2.5	0.360 0.360 0.0240	<u>Units</u> Ib/ton Ib/ton Ib/ton	Basis AP-42, Table AP-42, Table AP-42, Table	9.11.1-1				
	to Baghou Emissions		PM (lb/hr) 78.75 0.39	PM10 (lb/hr) 78.75 0.39	PM2.5 (lb/hr) 5.25 0.19	PM (ton/yr) 331.70 1.62	PM10 (ton/yr) 331.70 1.62	PM2.5 (ton/yr) 22.11 0.81
	mum Transfe rage Transfe	er Rate/hour er Rate/hour re Efficiency Operation	219 100	tons/hr tons/hr % hours/year	completely encl	osed aspiration	system	
E	Gi aghouse Fa	Throughput rain Loading In Flow Rate PM10 Ratio	0.00100 10,080	gr/scf scfm	PM emission D conservatively ba			
Emission	Factors							
PM PM10 PM2.5	0.360 0.360 0.0240	<u>Units</u> Ib/ton Ib/ton Ib/ton	Basis AP-42, Table AP-42, Table AP-42, Table	9.11.1-1				
	to Baghou Emissions		PM (lb/hr) 78.75 0.09	PM10 (lb/hr) 78.75 0.09	PM2.5 (lb/hr) 5.25 0.04	PM (ton/yr) 331.70 0.36	PM10 (ton/yr) 331.70 0.36	PM2.5 (ton/yr) 22.11 0.18

Vertical Bean Conditioner							
PR-6		have a line					
Maximum Transfer Rate/hou		tons/hr					
Average Transfer Rate/hou		tons/hr					
Capture Efficienc	-		completely enclo	sed aspiration	system		
Operation		hours/year					
Annual Throughpu							
PM2.5 Grain Loadin		grain/dscf	Emissions from M				
PM10 Grain Loadin		grain/dscf	Emissions from N	March 2016 st	ack test in De	strehan	
Cyclone Fan Flow Rate							
PM2.5:PM10 Rati	0 0.7000	controlled:	conservatively base	ed on cyclone	stack test dat	a	
	PM	PM10	PM2.5	PM	PM10	PM2.5	
	(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)	
Cyclone Emissions	0.150	0.150	0.144	0.63	0.63	0.61	
Flaker Aspiration PR-7							
Maximum Transfer Rate/hou		topo/br					
		tons/hr					
Average Transfer Rate/hou		tons/hr	a second state of second s	and contration			
	-		completely enclo	sed aspiration	system		
		-	Council Bluffs 20	14 Stack Test	t on FA2 - Fla	ker Baghouse, 90%	%CI
PM2.5:PM10 Rati	o 0.5000	PM2.5:PM	0 Ratio from EPA F	PM calculator			
Emission Factors							
	Capture Efficiency 100 % Operation 8,424 hours/year Annual Throughput 1,842,750 ton/year Grain Loading 0.00372 grain/dscf Cyclone Fan Flow Rate 40,000 scfm PM2.5:PM10 Ratio 0.5000 PM2.5:PM10 I ssion Factors ng <u>Units</u> Basis M 0.370 Ib/ton AP-42, Table 9.11.1-1						
		e 9.11.1-1					
PM10 0.3700 lb/ton							
PM2.5 0.1850 lb/ton	the second second second second		EPA PM calculator	for baghouse	s(0.5)		
	-	-	5140 5	-	DIMAG	D140 5	
	PM	PM10	PM2.5	PM	PM10	PM2.5	
	(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)	
PM Emissions using EF	80.94	80.94	40.47	340.91	340.91	170.45	
Baghouse Emissions	1.28	1.28	0.64	5.37	5.37	2.69	
Hull Grind w/baghouse							
PR-5							
Maximum Transfer Rate/hou	ır 14.6	tons/hr					
Average Transfer Rate/hou	ır 14.6	tons/hr					
Capture Efficience	y 100	%	completely enclo	sed aspiration	system		
Operation		hours/year					
Annual Throughpu		ton/year					
Grain Loadin		grain/dscf	PM emissions fro	om Dehulling 1	Fest: Council I	Bluffs, October 199	99
Baghouse Fan Flow Rat	-	-		9			
PM2.5:PM10 Rati			conservatively base	ed on baghou	se stack test o	data	
Emission Factors	Basis						
PM 2.000 lb/ton	Basis AP-42, Tabl	0 11 1 1					
			3-02-007-86				
PM10 1.20 lb/ton				77			
PM2.5 0.4524 lb/ton	Per PM Calo	culator PM2.	5:PM10 ratio of 0.3	//			
	PM	PM10	PM2.5	PM	PM10	PM2.5	
	(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)	
Uncontrolled Emissions	29.17	17.50	6.60	122.85	73.71	27.79	
Baghouse Emissions	0.14	0.14	0.07	0.58	0.58	0.29	
	name of the	100000000000					

	raction Process							
EX-	Maximum Transfer Ra Average Transfer Ra Capture Et	ate/hour fficiency		tons/hr tons/hr %				
	Op Annual Thre	peration oughput	8,424 1,842,750	hours/year ton/year				
<u>Emi</u>	ssion Factors	Inito	Pasia					
1		Jnits b/ton	Basis Veg Oil MAC		0.19	gal/ton		
		b/ton	veg oli liiAo	I, OLIV.		lb/gal		
		brion			64%	n-hexane		
			VOC	n-hexane	VOC	n-hexane		
			(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)		
Und	controlled Potential		234.0	149.8	985.6	630.8		
VOO	and n-hexane emission	ns come f	rom three so	ources, 1) fu	gitive, 2) mineral o	oil absorber ar	nd 3) DTDC sta	acks
	eral Oil Absorber							
NA	Maximum Transfer Ra	ate/hour	164	tons/hr				
	Average Transfer Ra			tons/hr				
	Capture E		100		completely enclo	sed aspiration	system	
		peration		hours/year	,			
	Annual Thr		1,382,063					
		%LEL	100		Could go as high	as 100%		
		LEL	0.0120	cf hex/cf	LEL for hexane is		ane per 100 c	of of air.
	hexane vapor	r density	0.2150	controlled:	conservatively bas			
	MOA exhaust air f					-		
	MOA exhaust air t	flow rate	350	scfm				
		flow rate exane %			4% n-hexane			
	n-he	exane %	0.64	Hexane is 6	60 (min/hr) x ρ (lb/	cf)		
	n-he	exane %	0.64 (ane/cf air) x VOC	Hexane is 6 Q (cf/min) x n-hexane	60 (min/hr) x ρ (lb/ VOC	n-hexane		
	n-he lb/hr=%LEL x Ll	exane %	0.64 kane/cf air) x VOC (lb/hr)	Hexane is 6 Q (cf/min) x n-hexane (lb/hr)	60 (min/hr) x ρ (lb/ VOC (ton/yr)	n-hexane (ton/yr)		
	n-he Ib/hr=%LEL x LI A Emissions*	exane % EL (cf he)	0.64 kane/cf air) x VOC (lb/hr) 54.2	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane		
	n-he lb/hr=%LEL x Ll	exane % EL (cf he)	0.64 kane/cf air) x VOC (lb/hr) 54.2	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane (ton/yr)		
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a <u>er Cyclones</u>	exane % EL (cf he)	0.64 kane/cf air) x VOC (lb/hr) 54.2	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane (ton/yr)		
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a <u>er Cyclones</u> 2 Dryers 1 & 2	exane % EL (cf he) are alread	0.64 kane/cf air) x VOC (lb/hr) 54.2 dy included i n	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emiss i	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane (ton/yr)		
No	n-he Ib/hr=%LEL x Li A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra	exane % EL (cf hex are alread ate/hour	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emiss i tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane (ton/yr)		
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra	exane % EL (cf hex are alread ate/hour ate/hour	0.64 xane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emissi tons/hr tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1.	n-hexane (ton/yr) 146.1		
No	n-he Ib/hr=%LEL x Li A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E	exane % EL (cf hex are alread ate/hour ate/hour fficiency	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emissi tons/hr tons/hr tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2	n-hexane (ton/yr) 146.1	system	
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op	exane % EL (cf hexare alread are alread ate/hour ate/hour fficiency peration	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emissi tons/hr tons/hr tons/hr % hours/year	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1.	n-hexane (ton/yr) 146.1	system	
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr	exane % EL (cf hexare alread ate/hour ate/hour ifficiency peration roughput	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 100 8,424 1,382,063	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo	n-hexane (ton/yr) 146.1		
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Average Transfer Ra Capture E Op Annual Thr Grain	exane % EL (cf hexate are alread ate/hour ate/hour fficiency peration oughput Loading	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 100 8,424 1,382,063 0.00111	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1.	n-hexane (ton/yr) 146.1		6CI
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr	exane % EL (cf hexate are alread ate/hour ate/hour fficiency peration oughput Loading ow Rate	0.64 kane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 100 8,424 1,382,063 0.00111 17,500	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo	n-hexane (ton/yr) 146.1 esed aspiration	t on DC2, 90%	6CI
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr Grain Baghouse Fan Fil	exane % EL (cf hexate are alread ate/hour ate/hour fficiency peration oughput Loading ow Rate	0.64 kane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 100 8,424 1,382,063 0.00111 17,500	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20	n-hexane (ton/yr) 146.1 esed aspiration	t on DC2, 90%	6CI PM2.5
No	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr Grain Baghouse Fan Fil	exane % EL (cf hexate are alread ate/hour ate/hour fficiency peration oughput Loading ow Rate	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf scfm controlled:	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM	t on DC2, 90% st data	PM2.5
No Dry EX-	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr Grain Baghouse Fan Fil	exane % EL (cf he) are alread ate/hour ate/hour fficiency beration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te	t on DC2, 90% st data PM10	
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Op Annual Thr Grain Baghouse Fan Fil PM2.5:PM cess Cyclone Emissio	exane % EL (cf he) are alread ate/hour ate/hour fficiency beration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM (lb/hr)	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr)	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr)	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr)	t on DC2, 90% st data PM10 (ton/yr)	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ri Average Transfer Ri Capture E Op Annual Thm Grain Baghouse Fan Fil PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4	exane % EL (cf he) are alread ate/hour ate/hour ate/hour fficiency peration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr)	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr)	t on DC2, 90% st data PM10 (ton/yr)	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ri Average Transfer Ri Capture E Op Annual Thr Grain Baghouse Fan Fle PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer Ri	exane % EL (cf he) are alread ate/hour ate/hour fficiency peration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr)	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr)	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr)	t on DC2, 90% st data PM10 (ton/yr)	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer Ra Average Transfer Ra Capture E Op Annual Thr Grain Baghouse Fan Fla PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer Ra Average Transfer Ra	exane % EL (cf he) are alread ate/hour ate/hour fficiency beration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164 164	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr) 0.063	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% st data PM10 (ton/yr) 1.40	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Op Annual Thr Grain Baghouse Fan Fle PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer R: Average Transfer R: Capture E	exane % EL (cf he) are alread ate/hour ate/hour fficiency oeration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 100 8,424 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr)	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% st data PM10 (ton/yr) 1.40	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Or Annual Thr Grain Baghouse Fan Fle PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer R: Average Transfer R: Average Transfer R: Capture E	exane % EL (cf he) are alread ate/hour ate/hour fficiency operation oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164 164 164 164 164 164 164 164	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr tons/hr % hours/year	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr) 0.063	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% st data PM10 (ton/yr) 1.40	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Or Annual Thr Grain Baghouse Fan Fli PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer R: Average Transfer R: Average Transfer R: Capture E Or Annual Thr	exane % EL (cf he) are alread ate/hour ate/hour fficiency oeration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164 164 164 100 8,424 1,382,063	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr % hours/year tons/hr %	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr) 0.063	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% st data PM10 (ton/yr) 1.40	PM2.5 (ton/yr)
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Or Annual Thr Grain Baghouse Fan Fli PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer R: Average Transfer R: Average Transfer R: Capture E Or Annual Thr Grain	exane % EL (cf he) are alread ate/hour ate/hour fficiency oeration oughput Loading ow Rate 10 Ratio	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164 164 100 8,424 1,382,063 0.00314	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr % hours/year tons/hr %	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr) 0.063	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% est data PM10 (ton/yr) 1.40	PM2.5 (ton/yr) 0.53
No Dry EX- Pro Dry	n-he Ib/hr=%LEL x LI A Emissions ote: Annual emissions a er Cyclones 2 Dryers 1 & 2 Maximum Transfer R: Average Transfer R: Capture E Or Annual Thr Grain Baghouse Fan Fli PM2.5:PM cess Cyclone Emissio er Cyclones 2 Dryers 3 & 4 Maximum Transfer R: Average Transfer R: Average Transfer R: Capture E Or Annual Thr	exane % EL (cf he) are alread ate/hour afficiency beration oughput Loading ow Rate 10 Ratio ate/hour ate/hour ate/hour fficiency beration oughput Loading ow Rate	0.64 cane/cf air) x VOC (lb/hr) 54.2 dy included in 164 164 164 1,382,063 0.00111 17,500 0.3770 PM (lb/hr) 0.167 164 164 100 8,424 1,382,063 0.00314 1,382,063 0.00314 17,500	Hexane is 6 Q (cf/min) x n-hexane (lb/hr) 34.7 n the emission tons/hr % hours/year tons meal/y grain/dscf scfm controlled: PM10 (lb/hr) 0.167 tons/hr % hours/year tons/hr % hours/year tons/hr	60 (min/hr) x ρ (lb/ VOC (ton/yr) 228.2 ions from EX-1. completely enclo ear Council Bluffs 20 conservatively bas PM2.5 (lb/hr) 0.063	n-hexane (ton/yr) 146.1 osed aspiration 006 Stack Test ed on stack te PM (ton/yr) 1.40	t on DC2, 90% est data PM10 (ton/yr) 1.40	PM2.5 (ton/yr) 0.53

			PM (lb/hr)	PM10 (lb/hr)	PM2.5 (lb/hr)	PM (ton/yr)	PM10 (ton/yr)	PM2.5 (ton/yr)
Process Cyc	clone Emiss	sions	0.471	0.471	0.178	3.97	3.97	1.50
Cooler Cyclo								
EX-2 Coolers Maximu	s 1&2 um Transfer	Rate/hour	164	tons/hr				
	age Transfer			tons/hr				
		Efficiency			completely enclo	osed aspiration	system	
		Operation		hours/year				
		Throughput in Loading			Council Bluffs 20	000 Stack Test	ton DC4 90%	CI
Bag	ghouse Fan				Council Dialis 20	DOS OLACK TOS	1011 004, 007	
		M10 Ratio			onservatively bas	sed on stack te	st data	
			PM	PM10	PM2.5	PM	PM10	PM2.5
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Process Cyc	clone Emiss	sions	0.71	0.71	0.27	6.01	6.01	2.27
	LONE EMIS	SIONS				11.39	11.39	4.29
HULL PROC	ESSING							
Hull Pellet C		clone						
MH-3								
	um Transfer			tons/hr				
Avera	age Transfer	Efficiency		tons/hr %	completely enclo	osed asniration	system	
		Operation		hours/year	completely ende		5951611	
	Annual 1							
E	Exhaust Fan	Flow Rate	8,000	scfm			an also data da	1-1-
E	PM2.5:F	Flow Rate M10 Ratio	8,000 0.7000	scfm controlled: co	onservatively bas	-		
E	PM2.5:F	Flow Rate	8,000 0.7000	scfm controlled: co	onservatively bas Morristown pelle	-		
Emission Fa	PM2.5:F Gra	Flow Rate M10 Ratio ain Loading	8,000 0.7000 0.004	scfm controlled: co		-		
<u>Emission Fa</u> Pelletizing	PM2.5:F Gra actors	Flow Rate M10 Ratio in Loading	8,000 0.7000 0.004 <u>Basis</u>	scfm controlled: co gr/dscf	Morristown pelle	et cooler test M		
<u>Emission Fa</u> Pelletizing PM	PM2.5:F Gra actors 0.150	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton	8,000 0.7000 0.004 <u>Basis</u> AP-42, Table	scfm controlled: co gr/dscf 9.9.1-2 for S	Morristown pelle CC 3-02-008-16	et cooler test M HE Cyclone		
<u>Emission Fa</u> Pelletizing	PM2.5:F Gra actors	Flow Rate M10 Ratio in Loading	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g	Morristown pelle	HE Cyclone		
Emission Fa Pelletizing PM PM10 PM2.5	PM2.5:F Gra actors 0.150 0.0750 0.0283	Flow Rate PM10 Ratio ain Loading Units Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control,	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E	Morristown pelle CC 3-02-008-16) of AP42 sectior	HE Cyclone n 9.9.1 r (0.377)	ar 2011 (95%	
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss	PM2.5:F Gra actors 0.150 0.0750 0.0283 sion Factor a	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton Ib/ton issumes cy <u>Units</u>	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u>	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu	CC 3-02-008-16 of AP42 section PA PM calculato	HE Cyclone n 9.9.1 r (0.377)	ar 2011 (95%	
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton	8,000 0.7000 0.004 <u>Basis</u> AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu))	CC 3-02-008-16 of AP42 section PA PM calculato	HE Cyclone n 9.9.1 r (0.377)	ar 2011 (95%	
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton Ib/ton issumes cy <u>Units</u>	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u>	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from E so back calcu)) 00)	CC 3-02-008-16 of AP42 section PA PM calculato	HE Cyclone n 9.9.1 r (0.377)	ar 2011 (95%	
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90)	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00)	Morristown pelle CC 3-02-008-16) of AP42 section PA PM calculato ulate using 90% of	HE Cyclone n 9.9.1 r (0.377) cyclone control	ar 2011 (95%	UL)
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 PM	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00) PM10	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5	HE Cyclone n 9.9.1 r (0.377) cyclone control	ar 2011 (95%	UL) PM2.5
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 PM (lb/hr)	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00) 00) PM10 (lb/hr)	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr)	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr)	PM10 (ton/yr)	UL) PM2.5 (ton/yr)
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 PM	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00) PM10	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5	HE Cyclone n 9.9.1 r (0.377) cyclone control	ar 2011 (95%	UL) PM2.5
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.0283/(1-0.90 PM (lb/hr) 21.88	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from El so back calcu)) 00) 00) PM10 (lb/hr) 10.94	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions	Flow Rate M10 Ratio in Loading <u>Units</u> Ib/ton Ib/ton issumes cy <u>Units</u> Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.0283/(1-0.90 PM (lb/hr) 21.88	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from El so back calcu)) 00) 00) PM10 (lb/hr) 10.94	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.0283/(1-0.90 PM (lb/hr) 21.88 0.27	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu 0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90) 0.0283/(1-0.	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu 0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim	PM2.5:F Gra 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90) 0.0283/(1-0.90 0.0283/(1-0.90) 0.0283/(1-0	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu 0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr hours/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim	PM2.5:F Gra actors 0.150 0.0750 0.0283 dion Factor a 1.500 0.750 0.283 d Potential issions age Transfer age Transfer Annual T	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90)	scfm controlled: co gr/dscf 9.9.1-2 for S er footnote (g Ratio from E so back calcu 0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr hours/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16	PM10 (ton/yr) 46.07	UL) PM2.5 (ton/yr) 17.37
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera	PM2.5:F Gra actors 0.150 0.0750 0.0283 dion Factor a 1.500 0.750 0.283 d Potential issions actors Annual Ta actors	Flow Rate M10 Ratio in Loading Units Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90) 0.0283/	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr hours/year ton/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19 Max and Avg are	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera Emission Fa Hull Storage PM	PM2.5:F Gra actors 0.150 0.0750 0.0283 dion Factor a 1.500 0.750 0.283 d Potential issions actors 0.025	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90) 0.0283	scfm controlled: co gr/dscf 9.9.9.1-2 for Si er footnote (g Ratio from El so back calcu)))0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr hours/year ton/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera Emission Fa Hull Storage PM PM10	PM2.5:F Gra actors 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions actors 0.025 0.0063	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.027 0.0283/(1-0.90 0.027 0.027 0.027	scfm controlled: co gr/dscf 9.9.9.1-2 for Si er footnote (g Ratio from El so back calcu)))0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr hours/year ton/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19 Max and Avg are	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera Emission Fa Hull Storage PM	PM2.5:F Gra actors 0.150 0.0750 0.0283 dion Factor a 1.500 0.750 0.283 d Potential issions actors 0.025	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90) 0.0283/	scfm controlled: co gr/dscf 9.9.9.1-2 for Si er footnote (g Ratio from El so back calcu)))0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr hours/year ton/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19 Max and Avg are	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera Emission Fa Hull Storage PM PM10	PM2.5:F Gra actors 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions actors 0.025 0.0063	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 Basis AP-42, Table 50% of PM p PM2.5:PM10 clone control, Basis 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.027 0.0283/(1-0.90 0.027 0.027 0.027	scfm controlled: co gr/dscf 9.9.9.1-2 for Si er footnote (g Ratio from El so back calcu)))0) 00) PM10 (lb/hr) 10.94 0.27 tons/hr hours/year ton/year	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19 Max and Avg are	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81
Emission Fa Pelletizing PM PM10 PM2.5 AP-42 Emiss PM PM10 PM2.5 Uncontrolled Cyclone Em Hull Storage MH-2c Maxim Avera Emission Fa Hull Storage PM PM10	PM2.5:F Gra actors 0.150 0.0750 0.0283 sion Factor a 1.500 0.750 0.283 d Potential issions d Potential issions actors 0.025 0.0063 0.0011	Flow Rate M10 Ratio in Loading Units Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton Ib/ton	8,000 0.7000 0.004 AP-42, Table 50% of PM p PM2.5:PM10 clone control, <u>Basis</u> 0.150/(1-0.90 0.0750/(1-0.90 0.0283/(1-0.90 0.027 0.0283/(1-0.90 0.027 0.0283/(1-0.90 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.0283/(1-0.90 0.027 0.027 0.027 0.0283/(1-0.90 0.027 0.027 0.0283/(1-0.90 0.027 0.027 0.0283/(1-0.90 0.027 0.027 0.027 0.027 0.0283/(1-0.90 0.027 0	scfm controlled: co gr/dscf 9.9.1-2 for Si er footnote (g Ratio from El so back calcu)) 00) PM10 (lb/hr) 10.94 0.27 tons/hr tons/hr hours/year ton/year 9.9.1-1 for gr 9.9.1-1 9.9.1-1	Morristown pelle CC 3-02-008-16 of AP42 section PA PM calculato ulate using 90% of PM2.5 (lb/hr) 4.12 0.19 Max and Avg are	HE Cyclone n 9.9.1 r (0.377) cyclone control PM (ton/yr) 92.14 1.16 e equal	PM10 (ton/yr) 46.07 1.16	UL) PM2.5 (ton/yr) 17.37 0.81

	Hull Pellet Storage Bins (2) MH-2-e-f Maximum Transfer Rate/hou Average Transfer Rate/hou						
	Maximum Transfer Rate/hou						
	Capture Efficiency Operation Annual Throughpu	r 14.6 / 100 8,424	hours/year	completely enclos	sed aspiration	system	
	Emission Factors						
	Pellet Storage Units PM 0.0033 lb/ton PM10 0.0008 lb/ton PM2.5 0.0001 lb/ton	AP-42, Table	9.9.1-2 for	Feed Shipping SC0 Feed Shipping SC0 EPA PM calculator	3-02-008-03		
		PM	PM10	PM2.5	PM	PM10	PM2.5
	Potential Particulate Emissions	(lb/hr) 0.048	(lb/hr) 0.012	(lb/hr) 0.002	(ton/yr) 0.203	(ton/yr) 0.049	(ton/yr) 0.008
	HULL REC CYCLONE w/FILTER						
1	MH-6 Maximum Transfer Rate/hou Average Transfer Rate/hou	r 14.6	tons/hr tons/hr				
	Capture Efficiency Operation Annual Throughpu	8,424	hours/year	completely enclo	sed aspiration	system	
	Grain Loading Baghouse Fan Flow Rate	0.00061 900	gr/dscf scfm	Council Bluffs Ju			
	PM2.5:PM10 Ratio	0.5000	controlled:	conservatively base	ed on baghous	se stack test o	data
	Emission FactorsHull StorageUnitsPM0.360lb/tonPM100.360lb/tonPM2.50.024lb/ton	<u>Basis</u> AP-42, Table AP-42, Table AP-42, Table	9.9.1-1	grain storage beca	use emission a	and particle s	ize should be similar.
	Uncontrolled Emissions Baghouse Emissions	PM (lb/hr) 5.25 0.005	PM10 (lb/hr) 5.25 0.005	PM2.5 (lb/hr) 0.35 0.002	PM (ton/yr) 22.11 0.02	PM10 (ton/yr) 22.11 0.02	PM2.5 (ton/yr) 1.48 0.01
	MEAL PROCESSING Meal Grinding/Sizing MH-1						
1	Maximum Transfer Rate/hou	r 164	tons/hr				
	Average Transfer Rate/hou Capture Efficienc Operation	y 100	tons/hr % hours/year	completely enclo	sed aspiration	system	
	Annual Throughpu Grain Loading	t 1,382,063 0.000683	ton/year gr/dscf	average hourly ra Council Bluffs No		00 tests - Mea	l finishing filter
	Exhaust Fan Flow Rate PM2.5:PM10 Rate			conservatively base	ed on baghous	se stack test o	data
	FIVIZ.5.FIVITU Rau						
	Emission Factors Meal Units	Basis					
	Emission FactorsMealUnitsPM0.340Ib/ton	AP-42, Table					
	Emission Factors Meal Units	AP-42, Table AP-42, Table	9.11.1-1	EPA PM calculator	(0.077)		

	PM PM10 PM2.5	3.40 3.40 1.282	Units Ib/ton Ib/ton Ib/ton	Basis 0.340/(1-0.90) 0.340/(1-0.90) 0.1282/(1-0.90)						
		ed Potentia Emissions	I	PM (lb/hr) 557.81 0.10	PM10 (lb/hr) 557.81 0.10	PM2.5 (lb/hr) 210.30 0.05	PM (ton/yr) 2349.51 0.44	PM10 (ton/yr) 2349.51 0.44	PM2.5 (ton/yr) 885.76 0.22	
		ge w/Bagho	ouse							
		Maximum Transfer Rate/hour Average Transfer Rate/hour Capture Efficiency Operation Annual Throughput Grain Loading Exhaust Fan Flow Rate			350 tons/hr 350 tons/hr 100 % completely enclosed aspiration system 8,424 hours/year 1,382,063 ton/year 0.0011 grain/dscf Council Bluffs Nov 99 & June 00 tests - Meal finishing fil 1,800 scfm					
		PM2.5:PM10 Ratio			0.5000 controlled: conservatively based on baghouse stack test data					
	Emission F Meal Storag PM PM10 PM2.5		Units Ib/ton Ib/ton Ib/ton	AIRS 1990 for	SCC 3-02	or meal loadout 2-007-91 EPA PM calculator	r (0.067)			
		ed Potentia Emissions	I	PM (lb/hr) 94.5 0.017	PM10 (lb/hr) 14.0 0.017	PM2.5 (lb/hr) 0.94 0.009	PM (ton/yr) 186.6 0.073	PM10 (ton/yr) 27.6 0.073	PM2.5 (ton/yr) 1.85 0.037	
		out Dust Co	llector #1 -							
	MH-4 Maximum Transfer Rate/hour Average Transfer Rate/hour Capture Efficiency Operation Annual Throughput Grain Loading Baghouse Fan Flow Rate PM2.5:PM10 Ratio Emission Factors Meal Loadout Units PM 0.2700 lb/ton PM10 0.0400 lb/ton PM2.5 0.0027 lb/ton			300 tons/hr90 % aspirated to dust collector4,076 hours/year978,193 ton/year0.0007 gr/dscf30,000 scfm						
				Basis AP-42, Table 9.11.1-1 for meal loadout AIRS 1990 for SCC 3-02-007-91 PM2.5:PM10 Ratio from EPA PM calculator (0.067)						
		ed Emissio Emissions nissions	ns	PM (lb/hr) 81.00 0.18 8.10	PM10 (lb/hr) 12.00 0.18 1.20	PM2.5 (lb/hr) 0.80 0.09 0.08	PM (ton/yr) 132.06 0.36 13.21	PM10 (ton/yr) 19.56 0.36 1.96	PM2.5 (ton/yr) 1.31 0.18 0.13	
	Meal Load	out Dust Co	liector #2 -	Rail						
	MH-5 Maxii	mum Transfe rage Transfe Cáptur Annual	er Rate/hour	750 tons/hr 90 % aspirated to dust collector 130 hours/year - increased by 30% to reflect actual loadout rate 75,246 ton/year						
	Baghouse Fan Flow Rate PM2.5:PM10 Ratio			30,000 scfm 0.5000 controlled: conservatively based on baghouse stack test data						

Emission F Meal Loado PM PM10 PM2.5		<u>Units</u> Ib/ton Ib/ton Ib/ton	AIRS 1990 fo	r SCC 3-02	or meal loadout 2-007-91 EPA PM calculato	or (0.067)			
	ed Emission Emissions nissions	ns	PM (lb/hr) 202.50 0.29 20.25	PM10 (lb/hr) 30.00 0.29 3.00	PM2.5 (lb/hr) 2.01 0.15 0.20	PM (ton/yr) 10.16 0.02 1.02	PM10 (ton/yr) 1.50 0.02 0.15	PM2.5 (ton/yr) 0.10 0.01 0.010	
MEAL HOU MH-7	ISE & LOAD	OUT & STO	RAGE BINS	DUST COL	LECTOR				
		er Rate/hour re Efficiency Operation	164.1 100 8,424	% hours/year	completely enclo	osed aspiration	system		
В	Gr aghouse Fa		0.0011 28,000	gr/dscf scfm	Council Bluffs N				
	PM2.5:	PM10 Ratio	0.5000	controlled:	conservatively bas	sed on baghou	se stack test	data	
PM PM10 PM2.5	0.2700 0.0400 0.0027	<u>Units</u> Ib/ton Ib/ton Ib/ton	AIRS 1990 fo	or SCC 3-02	r meal loadout 2-007-91 EPA PM calculato	or (0.067)			
	ed Emission Emissions	ns	PM (lb/hr) 81.00 0.27	PM10 (lb/hr) 12.00 0.27	PM2.5 (lb/hr) 0.80 0.136	PM (ton/yr) 186.58 1.14	PM10 (ton/yr) 27.64 1.14	PM2.5 (ton/yr) 1.85 0.57	
REF-4 Maxin	Annual Gr Exhaust Fa	er Rate/hour	33 100 43.5 943 0.0011 1,100	33 tons/hrBased on max truck unloading rate33 tons/hrBased on max truck unloading rate100 %completely enclosed aspiration system43.5 hours/yearthroughput divided by hourly rate increased by 50% to reflect actua943 ton/yearestimate based on past usage and ratioed to future usage0.0011 gr/dscfCouncil Bluffs Nov 99 & June 00 tests - Meal finishing filter1,100 scfmonservatively based on baghouse stack test data					
Silo Filter I	Emissions		PM (lb/hr) 0.011	PM10 (lb/hr) 0.011	PM2.5 (lb/hr) 0.005	PM (ton/yr) 0.00023	PM10 (ton/yr) 0.00023	PM2.5 (ton/yr) 0.00012	
No. 2 Silo - REF-6	Filter Aid								
Maxi	Annual Gr Exhaust Fa		33 100 15.5 335 0.0011 1,100	hours/year ton/year gr/dscf scfm	Based on max to completely enclo - throughput divide equals tons/hou Council Bluffs N conservatively bas	osed aspiration ad by hourly rate ir x hours/year lov 99 & June (system e increased b 00 tests - Mea		tual rate
Silo Filter I	Emissions		PM (lb/hr) 0.011	PM10 (lb/hr) 0.011	PM2.5 (lb/hr) 0.005	PM (ton/yr) 0.00008	PM10 (ton/yr) 0.00008	PM2.5 (ton/yr) 0.00004	

No. 3 Silo - Bleaching Clay REF-7

REF-									
Maxin	num Transf	er Rate/hour	33	tons/hr	Based on max t	truck unloading	rate		
	Captu	re Efficiency	100	%	completely encl	osed aspiration	n system		
		Operation	43.5	hours/year	- throughput divide	ed by hourly rat	te increased b	y 50% to reflect a	ctual rate
	Annual	Throughput	943	ton/year	estimate based	on past usage	and ratioed to	future usage	
	G	rain Loading	0.0011	gr/dscf	Council Bluffs N	lov 99 & June	00 tests - Mea	I finishing filter	
	Exhaust Fa	n Flow Rate	1,100	scfm					
	PM2.5	:PM10 Ratio	0.5000	controlled:	conservatively bas	sed on baghou	se stack test	data	
			PM	PM10	PM2.5	PM	PM10	PM2.5	
			(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)	
Silo Filter E	Emissions		0.011	0.011	0.005	0.00023	0.00023	0.00012	
Cooling To	Wor								
	Contraction of the local division of the loc	er Rate/hour	840,000	gal/hr	recirculation rate	е			
Aver	rage Transf	er Rate/hour	840,000		based on 14000	gpm recirc rat	te		
	Captu	re Efficiency	0		there is no cont				
		Operation	8760	hours/year					
	Annual	Throughput	7.36E+09	gal/year	average hourly	rate x hours/yr			
"Atmospher	ric Emission	s From Evapo	orative						
		e Micheletti, 2							
		nual Conferen							
		PM2.5 EF							
(ppm)		gal recirc							
500	0.00003	0.00001							
1,000	0.00005	0.00002							
2,500	0.00009	0.00005							
5,000	0.00016	0.00009							
10,000	0.00028	0.00016							

11,500 0.000313 0.0001825 Interpolated values 0.00031

These values are based on a drift rate of 0.002%

0.0005

lb/hr= EF lb/ton x TP ton/hr; ton/yr = EF lb/ton x TP ton/yr x 1/2000 1/3rd of emissions from each of three cells

Emission Factors

20,000

		Units	Basis
PM	0.00021	lb/1000 gal	Mass balance using a TDS of 2,500ppm and drift rate of 0.001%
PM10	0.000045	lb/1000 gal	Used TDS/table and drift rate, assuming a TDS of 2,500ppm and 0.001% drift rate.
PM2.5	0.000025	lb/1000 gal	Used TDS/table and drift rate, assuming a TDS of 2,500ppm and 0.001% drift rate.

	PM	PM10	PM2.5	PM	PM10	PM2.5
	(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontrolled Potential	0.058	0.0126	0.007	0.3	0.1	0.03
Controlled and uncontrolled em	ission are equal	because there	are no controls			

Cooling Tower

Maximum Transfer Rate/hour	840,000	gal/hr	recirculation rate	
Average Transfer Rate/hour	840,000	gal/hr	based on 14000 gpm recirc rate	
Capture Efficiency	0	%	there is no control	
Operation	8760	hours/year		
Annual Throughput	7.36E+09		average hourly rate x hours/yr	
Operation	8760	hours/year		'n

Emission Factors

		Units	Basis
PM	0.00021	lb/1000 gal	Mass balance using a TDS of 2,500ppm and drift rate of 0.001%
PM10	0.000045	lb/1000 gal	Used TDS/table and drift rate, assuming a TDS of 2,500ppm and 0.001% drift rate.
PM2.5	0.000025	lb/1000 gal	Used TDS/table and drift rate, assuming a TDS of 2,500ppm and 0.001% drift rate.

	PM	PM10	PM2.5	PM	PM10	PM2.5
	(lb/hr)	(lb/hr)	(lb/hr)	(ton/yr)	(ton/yr)	(ton/yr)
Uncontrolled Potential	0.058	0.0126	0.007	0.3	0.1	0.03
Controllad and uncontrollad an	stasten and anual	he serves the ses	and no controls			

Controlled and uncontrolled emission are equal because there are no controls.

PROJECTED ACTUAL COMBUSTION EMISSIONS

	Grain Dryers See Emissior		dryer emissior	ns calculations.					
1,842,750	tons of beans	5							
Boiler House									
BO-3 and BO-4									
Natural Gas Co	mbustion								
		ontent of Fuel		MBtu/MMCF					
		nput Capacity		MBtu/hr PER EAC	CH				
	waximu	m Firing Rate Operation	0.099 M 7581.6 hd	MCF/hr					
Based on the "C	ould Have Ac			ombustion Numb	ers" and bean t	hroughout			
based on the c				beans was combu					
Assume that bas				26% of the require					
With 10	0% loss in eff	iciency:	mcf of gas / t	on of beans x tons	s of beans x 1.1	=			
			1105.36 M	MCF/yr					
Emission Factor	s (Ib/MMCF)								
PM	PM10	PM2.5	SO ₂	NOx	CO	VOC	n-hexane		
7.6	7.6	7.6	0.6	48.7	84	5.5	1.8		
Emission factors	s for natural g	as combustior	are from AP4	12, Tables 1.4-1,-2	2,-3, July 1998 e	except NO	x and CO		
Per Boiler									
		PM	PM10	PM2.5	SO2	NOx	CO	VOC	<u>n-hexane</u>
Max Hourly (Ib/		0.75	0.75	0.75	0.059	4.82	8.32	0.54	0.18
Max Annual (tp	у)	2.10	2.10	2.10	0.17	13.46	23.21	1.52	0.50
Total for both b	oilers								
		PM	PM10	PM2.5	SO2	NOx	<u>CO</u>	VOC	<u>n-hexane</u>
Max Hourly (lb/		1.50	1.50	1.50	0.12	9.64	16.63	1.09	0.36
Max Annual (tp	у)	4.20	4.20	4.20	0.33	26.92	46.42	3.04	0.99
Greenhouse Ga	sses								
Emission Factor	s (Ib/MMCF)		Global Warm	-					
CO ₂	N ₂ O	Methane	CO ₂	N ₂ O	Methane				
120,000	0.64	2.3	1.0	310	21				

Per Boiler

	<u>CO</u> 2	N ₂ O	Methane	CO _{2e}
Max Hourly (lb/hr)	11,880	0.063	0.228	11,904
Max Annual (tpy)	33,161	0.177	0.636	33,229

Boiler House

BO-5 Existing Fuel Oil

BU-5 Existing	rueron								
	Heat	content of Fuel Input Capacity um Firing Rate Operation	99 0.733333 7581.6	MMBtu/hr					
Emission Facto	ors (lb/KGal)								
PM	PM10	PM2.5	SO ₂	NOx	co	VOC			
2	2	2	7.1	20	5	0.34			
'Emission facto SO2 emission		6S		P42, Tables 1.3-1					
		PM	PM10	PM2.5	<u>SO</u> 2	NOx	<u>co</u>	VOC	<u>n-hexane</u>
Max Hourly (It		1.47	1.47	1.47	5.207	14.67	3.67	0.25	0.00
Max Annual (t	py)	5.56	5.56	5.56	19.74	55.60	13.90	0.95	0.00
Boiler House BO-5 New									
Natural Gas C	ombustion								
	Heat C	ontent of Fuel	1000	MMBtu/MMCF					
	Heat	Input Capacity	120	MMBtu/hr					
	Maximu	um Firing Rate	0.12	MMCF/hr					

Operation 7581.6 hours/year

Based on the "Could Have Accommodated Natural Gas Combustion Numbers" and bean throughput

0.8758 mcf of natural gas /ton of beans was combusted in the 3 old main boilers

Assume that based on size, BO5 will supply 37.74% of the required steam. With 10% loss in efficiency: 669.91 MMCF/yr

Emission Factors (Ib/MMCF)

PM	PM10	PM2.5	SO ₂	NOx	CO	VOC	n-hexane	
7.6	7.6	7.6	0.6	48.7	84	5.5	1.8	
Emission factor	s for natural ga	as combustion	are from AP	42, Tables 1.4-1,-2,-	3, July 1998	except NO:	x and CO	

	PM	PM10	PM2.5	SO2	NOx	CO	VOC	n-hexane
Max Hourly (lb/hr)	0.91	0.91	0.91	0.072	5.84	10.08	0.66	0.22
Max Annual (tpy)	2.55	2.55	2.55	0.20	16.31	28.14	1.84	0.60

Greenhouse Gasses

Emission Factor	s (Ib/MMCF)				
CO ₂	N ₂ O	Methane	CO2	N ₂ O	Methane
120,000	0.64	2.3	1.0	310	21
		CO2	N ₂ O	Methane	CO _{2e}
Max Hourly (Ib/	hr)	14,400	0.077	0.276	14,430
Max Annual (tp)	y)	40,195	0.21	0.77	40,277

GEKA Boilers REF 1 & 2

Natural Gas Combustion

	Heat Co	ontent of Fuel	1000	MMBtu/MMCF				
	Heat I	nput Capacity	13	MMBtu/hr PER EAC	н			
	Maximu	m Firing Rate	0.013	MMCF/hr				
		Operation	7581.6	hours/year				
Based on the "	Could Have Ac	commodated	Natural Gas	s Combustion Numbe	rs" and bean t	hroughpu	t	
	0.0558	mcf of natur	al gas /ton o	of beans was combus	ted in the GEK	As		
With	10% loss in effi	ciency:	113.11	MMCF/yr				
Emission Facto	ors (Ib/MMCF)							
PM	PM10	PM2.5	SO ₂	NOx	CO	VOC	n-hexane	
7.6	7.6	7.6	0.6	100.0	84	5.5	1.8	
Emission facto	rs for natural ga	as combustio	n are from A	P42, Tables 1.4-1,-2,	-3, July 1998.			
Per Boiler								
		PM	PM10	PM2.5	SO,	NOx	CO	VOC
Max Hourly (II	b/hr)	0.10	0.10	0.10	0.008	1.30	1.09	0.07
Max Annual (t	tpy)	0.21	0.21	0.21	0.02	2.83	2.38	0.16
Total for both	boilers							
		PM	PM10	PM2.5	SO2	NOx	CO	VOC
Max Hourly (II	b/hr)	0.20	0.20	0.20	0.016	2.60	2.18	0.14

<u>n-hexane</u>

0.02

0.05

<u>n-hexane</u>

0.05

0.10

0.31

Max Hourly (lb/hr)	0.20	0.20	0.20	0.016	2.60	2.18
Max Annual (tpy)	0.43	0.43	0.43	0.03	5.66	4.75
Greenhouse Gasses						

Emission Factors (Ib/MMCF)			Global Warmi	ng Potential	
CO2	N ₂ O	Methane	CO ₂	N ₂ O	Methane
120,000	0.64	2.3	1.0	310	21

0

Per Boiler

		CO2	N2O	Methane	CO _{2e}	
Max Hourly (lb/h	r) 1	,560	0.008	0.030	1,563	
Max Annual (tpy)) 3	3,393	0.02	0.07	3,400	
GARIONI NAVAL	BOILER					
REF 5						
Natural Gas Com	nbustion					
	Heat Conten	t of Fuel	1000	MMBtu/MMCF		
	Heat Input (Capacity	5	MMBtu/hr PER EACH		
	Maximum Fir	ing Rate	0.005	MMCF/hr		
	Op	peration	7581.0	6 hours/year		
Based on the "Co	uld Have Accomn	nodated I	Natural Ga	as Combustion Numbers"	and bean t	hroughput
	0.015 mcf	of natura	I gas /ton	of beans was combusted	in the GEK	As
With 109	y (Ib/hr) 1,560 0.008 0.030 1,563 al (tpy) 3,393 0.02 0.07 3,400 NAVAL BOILER As Combustion Heat Content of Fuel 1000 MMBtu/MMCF Heat Input Capacity 5 MMBtu/hr PER EACH					
Emission Factors	(Ib/MMCF)					
PM	PM10 P	M2.5	SO ₂	NOx	CO	VOC
7.6	7.6	7.6	0.6	40.0	84	5.5
					1 1 1000	

Emission factors for natural gas combustion are from AP42, Tables 1.4-1,-2,-3, July 1998 except NOx and CO

	PM	PM10	PM2.5	SO2	NOx	CO	VOC	n-hexane
Max Hourly (lb/hr)	0.04	0.04	0.04	0.003	0.20	0.42	0.03	0.01
Max Annual (tpy)	0.12	0.12	0.12	0.01	0.61	1.28	0.08	0.03

n-hexane

1.8

Greenhouse Gasses

Emission Factor	s (lb/MMCF)				
CO ₂	N ₂ O	Methane	CO ₂	N ₂ O	Methane
120,000	0.64	2.3	1.0	310	21
		<u>CO2</u>	N ₂ O	Methane	CO _{2e}
Max Hourly (Ib/	hr)	600	0.003	0.012	601
Max Annual (tp)	y)	1,824	0.01	0.03	1,828

PACKAGING - HOT WATER HEATER - AJAX BO-6

Natural Gas Combustion								
Heat	Content of Fuel	10 TH 10 TH	MMBtu/MMCF					
	t Input Capacity		MMBtu/hr					
Maxir	num Firing Rate							
	Operation		hours/year					
Based on the "Could Have 0.00			Combustion Number of beans was combust			t		
With 10% loss in		-	MMCF/yr					
Emission Factors (Ib/MMCI	F)							
PM PM10	PM2.5	SO ₂	NOx	CO	VOC	n-hexane		
7.6 7.6	7.6	0.6	100.0	84	5.5	1.8		
Emission factors for natura	I gas combustion	are from A	P42, Tables 1.4-1,-2,-	-3, July 1998 ex	cept NO	x and CO		
	PM	PM10	PM2.5	SO2	NOx	CO	VOC	n-hexane
Max Hourly (lb/hr)	0.04	0.04	0.04	0.003	0.53	0.44	0.03	0.01
Max Annual (tpy)	0.04	0.04	0.04	0.003	0.55	0.46	0.03	0.01
Greenhouse Gasses								
Emission Factors (Ib/MMCI	F)		ming Potential					
CO ₂ N ₂ O	Methane	CO ₂	N ₂ O	Methane				
120,000 0.64	2.3	1.0	310	21				
	CO ₂	N ₂ O	Methane	CO _{2e}				
Max Hourly (lb/hr)	630	0.003	0.012	631				
Max Annual (tpy)	657	0.004	0.013	658				
Emergency Fire Pump En	igines #1 and #2	2						
Eng	ine HorsePower	801	HP					
Diesel Fu	el Max Sulfer %	0.0015	%	NSPS Subp	art IIII			
	Consumption	31.6	gal/hr					
	Operation	100	hours/year					
Emission Factors (Ib/HP · h								
PM10	SO ₂	NOx	CO	VOC				
0.002200		0.0310	0.0067	0.002474				
Emission factors for natura				1.1.1	1.1			
	PM10	SO2	NOx	CO	VOC	_		
Max Hourly (lb/hr)	1.76	1.64	24.83	5.35	1.98			
Max Annual (tpy)	0.18	0.16	2.48	0.54	0.20			

TOTAL CF CONSUMED PER YEAR INCLUDING GRAIN DRYER=

2515.53 MMCF/YR

APPENDIX B

UNITED STATES ENVIRON "AL PROTECTION AGENCY AIR QUAR SYSTEM QUICK LOOK REPORT (AMP450 END)

Feb. 5, 2019

CERTIFICATION EVALUATION AND CONCURRENCE FLAG MEANINGS

itoring organization has revised data from this monitor since the ecent certification letter received from the state. Trifying agency has submitted the certification letter and required reports, but the certifying agency and/or EPA has determined ssues regarding the quality of the ambient concentration data cannot showed due to data completeness, the lack of performed quality ice checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. Trifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding taility per se. This flag will remain until the Region provides an "N" or courrence flag. fied. The certifying agency did not submit a required certification
acent certification letter received from the state. Actifying agency has submitted the certification letter and required are reports, but the certifying agency and/or EPA has determined assues regarding the quality of the ambient concentration data cannot blved due to data completeness, the lack of performed quality ace checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. Actifying agency has submitted the certification letter and required actifying agency has submitted the certification letter and required actifying reports. A value of "S" conveys no Regional assessment regarding tality per se. This flag will remain until the Region provides an "N" or accurrence flag.
trifying agency has submitted the certification letter and required r reports, but the certifying agency and/or EPA has determined usues regarding the quality of the ambient concentration data cannot plved due to data completeness, the lack of performed quality use checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. ctifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding tality per se. This flag will remain until the Region provides an "N" or ucurrence flag.
v reports, but the certifying agency and/or EPA has determined ssues regarding the quality of the ambient concentration data cannot olved due to data completeness, the lack of performed quality nee checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. stifying agency has submitted the certification letter and required v reports. A value of "S" conveys no Regional assessment regarding hality per se. This flag will remain until the Region provides an "N" or neurrence flag.
usues regarding the quality of the ambient concentration data cannot solved due to data completeness, the lack of performed quality ince checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. stifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding hality per se. This flag will remain until the Region provides an "N" or negarize flag.
where due to data completeness, the lack of performed quality ince checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. In the submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding mality per se. This flag will remain until the Region provides an "N" or incurrence flag.
nce checks or the results of uncertainty statistics shown in the report or the certification and quality assurance report. rtifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding mality per se. This flag will remain until the Region provides an "N" or acurrence flag.
report or the certification and quality assurance report. tifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding mality per se. This flag will remain until the Region provides an "N" or acurrence flag.
rtifying agency has submitted the certification letter and required reports. A value of "S" conveys no Regional assessment regarding mality per se. This flag will remain until the Region provides an "N" or macurrence flag.
reports. A value of "S" conveys no Regional assessment regarding mality per se. This flag will remain until the Region provides an "N" or nourrence flag.
ality per se. This flag will remain until the Region provides an "N" or acurrence flag.
currence flag.
find The continue account did not cubmit a newlined continue
ined. The certifying agency and not submit a required certification
and summary reports for this monitor even though the due date has
or the state's certification letter specifically did not apply the
cation to this monitor.
cation is not required by 40 CFR 58.15 and no conditions apply to be
is for assigning another flag value
tifying agency has submitted a certification letter, and EPA has no
ved reservations about data quality (after reviewing the letter, the
ed summary reports, the amount of quality assurance data
ed to AQS, the quality statistics, and the highest reported
rations).

Note: The * indicates that the mean does not satisfy summary criteria.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM QUICK LOOK REPORT (AMP450 END)

Feb. 5, 2019

PQAOS USED IN THIS REPORT

____,

PQAO	AGENCY DESCRIPTION	
0013	Al Dept Of Env Mgt	

.

Note: The * indicates that the mean does not satisfy summary criteria.

UNITED STATES ENVIRON. 'AL PROTECTION AGENCY AIR QUAL SYSTEM QUICK LOOK REPORT (AMP450 END)

Feb. 5, 2019

METHODS USED IN THIS REPORT

	METHOD		
PARAMETER	CODE	COLLECTION METHOD	ANALYSIS METHOD
44201	047	INSTRUMENTAL	ULTRA VIOLET

Note: The * indicates that the mean does not satisfy summary criteria.

.

.

Feb. 5, 2019

Note: These reported values do not reflect the combination of 14129 and 85129 and validation substitution tests utilized for Design Value Calculations

•

UNITED STATES ENVIRON "AL PROTECTION AGENCY AIR QUAL . SYSTEM OUICK LOOK REPORT (AMP450)

Feb. 5, 2019

Ozone (44201))	Alabama							Parts per million (007)						
8-HOUR SITE ID	P O C PQAO CITY	COUNTY	ADDRESS	YEAR	METH	*0BS	VALID DAYS MEAS	NUM DAYS REQ	1ST MAX 8-HR	2ND MAX 8-HR	3RD MAX 8-HR	4TH MAX 8-HR	DAY MAX> STD	CERT and EVAL	
01-103-0011	1 0013 Decatur	Morgan	P.O. BOX 2224 WALLACE DEVELOPMENT CENTER. DECATUR, ALABAMA	2015	047	99	243	245	.064	. 063	.063	.063	0	Y	0
01-103-0011	1 0013 Decatur	Morgan	P.O. BOX 2224 WALLACE DEVELOPMENT CENTER. DECATUR, ALABAMA	2016	047	100	244	245	.070	.069	.069	.067	0	Y	0
01-103-0011	1 0013 Decatur	Morgan	P.O. BOX 2224 WALLACE DEVELOPMENT CENTER. DECATUR, ALABAMA	2017	047	95	233	245	.064	.062	.061	.060	0	Y	0

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY AIR QUALITY SYSTEM OUICK LOOK REPORT (AMP450)

Ozone (44201) Parts per million (007) Alabama 1-HOUR Р 1STVALID NUM 2ND 3RD 4TH DAY EST MISS CERT MAX DAYS< 0 DAYS DAYS мах мах MAX MAX> DAYS> and SITE ID C POAO CITY COUNTY ADDRESS YEAR METH MEAS 1-HR STD STD EVAL EDT REO STD 1-HR 1-HR 1-HR 01-103-0011 1 0013 Decatur Morgan P.O. BOX 2224 2015 047 244 245 .087 .072 070 069 0 0 0 1 v 0 WALLACE DEVELOPMENT CENTER DECATUR, ALABAMA P.O. BOX 2224 01-103-0011 1 0013 Decatur Morgan 2016 047 244 245 .077 .076 .075 .075 0 0 0 1 Y 0 WALLACE DEVELOPMENT CENTER. DECATUR, ALABAMA 01-103-0011 1 0013 Decatur Morgan P.O. BOX 2224 2017 047 236 245 .070 069 066 065 0 0.0 1 Y 0 WALLACE DEVELOPMENT CENTER. DECATUR, ALABAMA

Feb. 5, 2019

UNITED STATES ENVIRON "AL PROTECTION AGENCY AIR QUAL SYSTEM QUICK LOOK REPORT (AMP450)

Feb. 5, 2019

EXCEPTIONAL DATA TYPES

EDT	DESCRIPTION				
1					

0 NO EVENTS

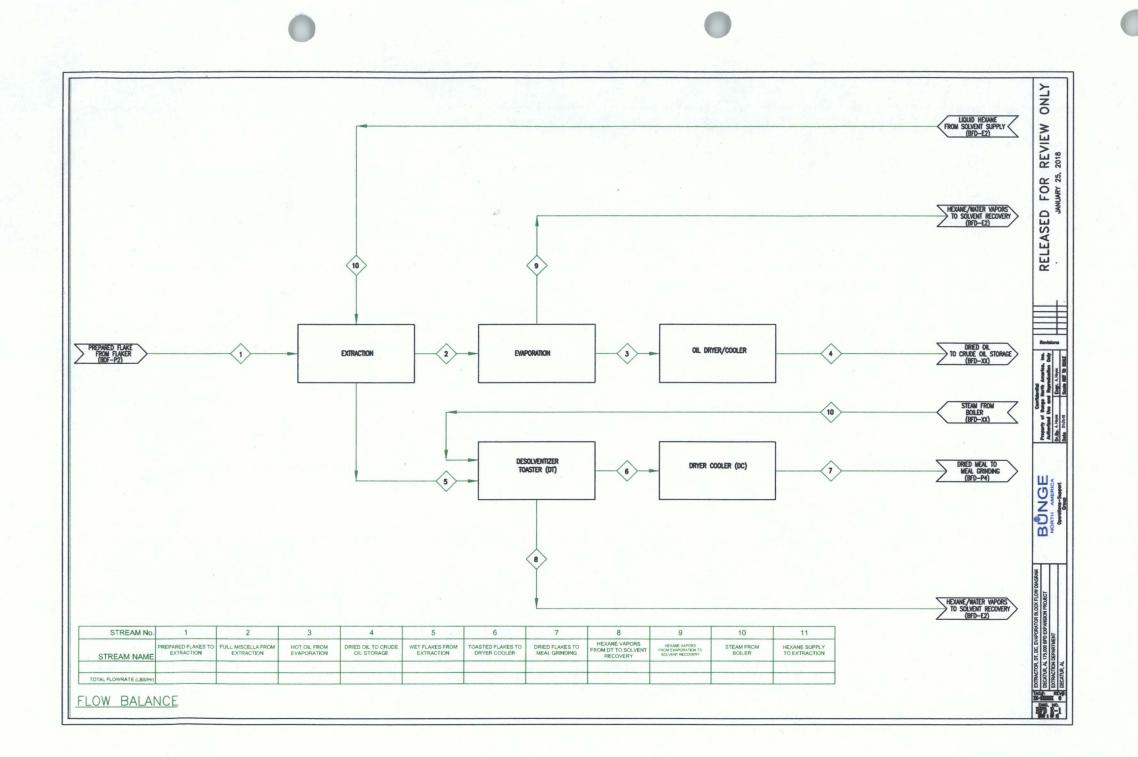
1 EVENTS EXCLUDED

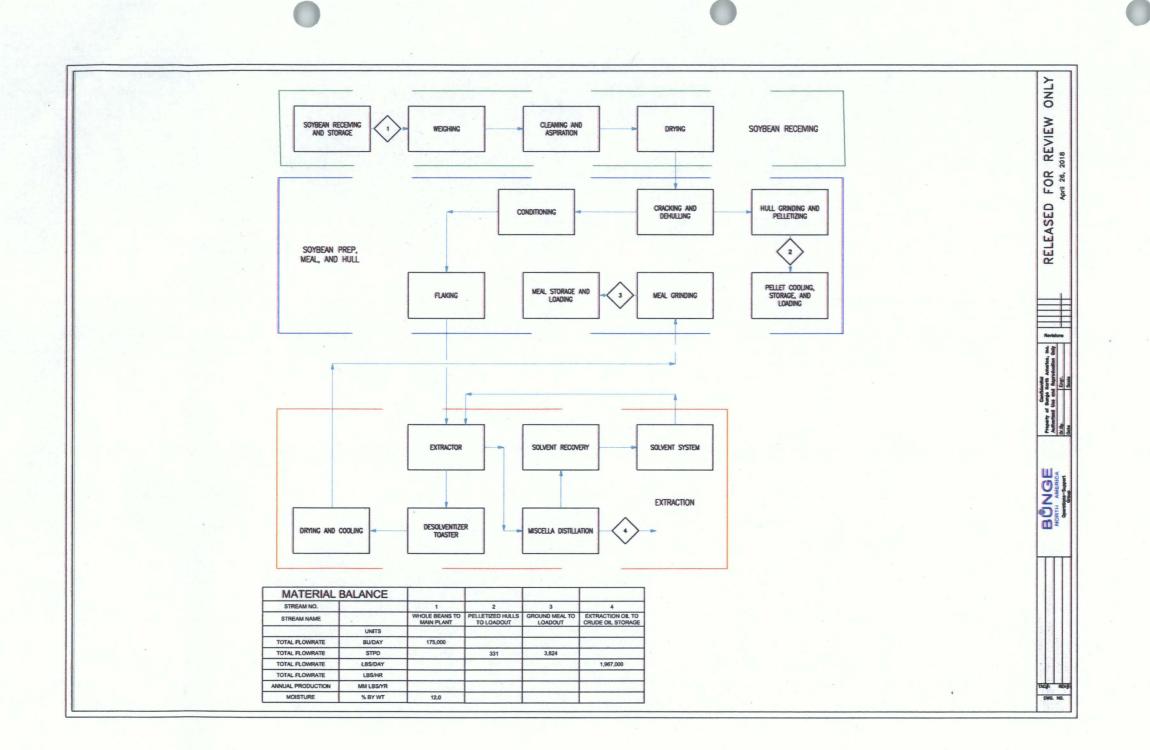
2 EVENTS INCLUDED

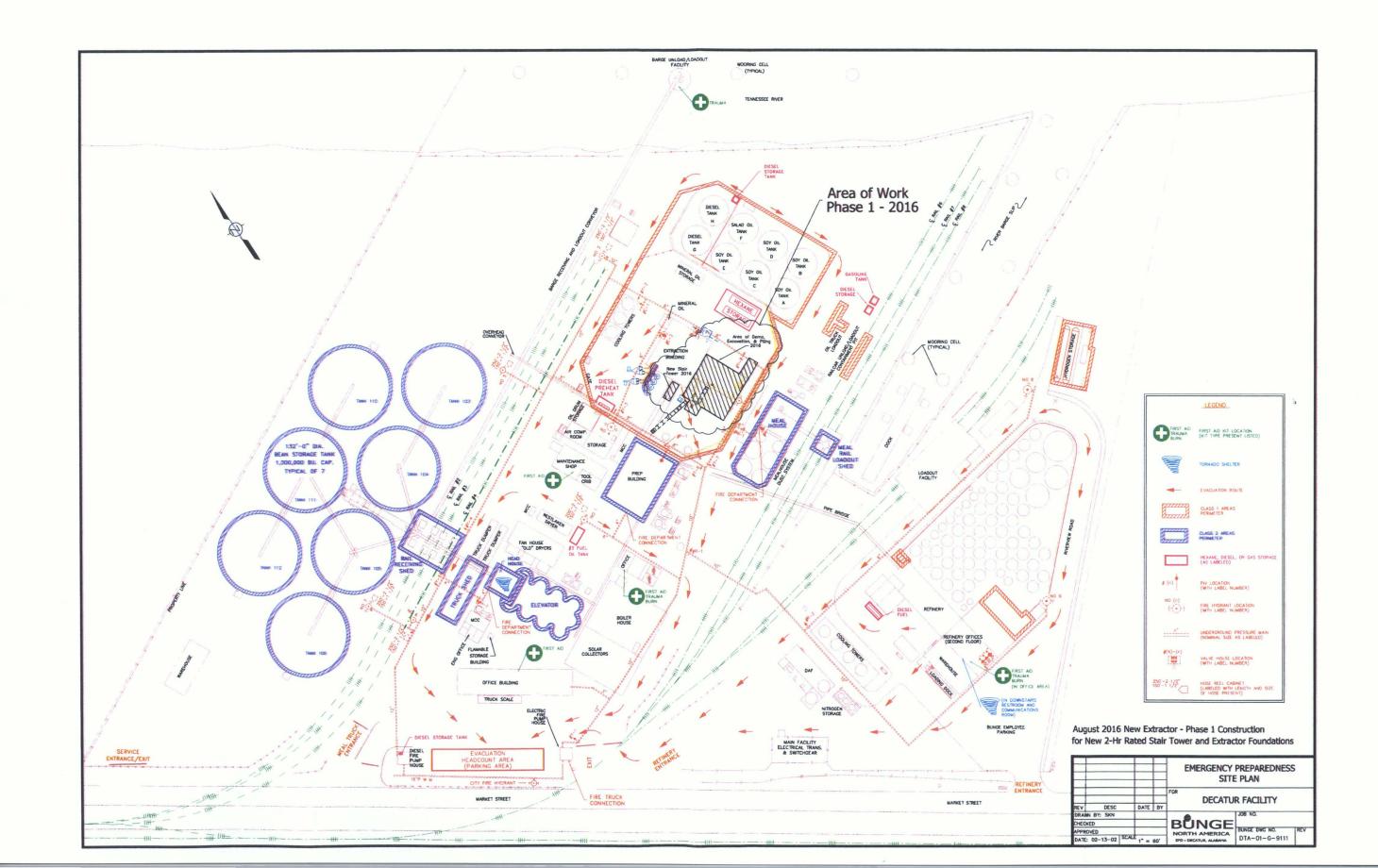
5 EVENTS WITH CONCURRENCE EXCLUDED

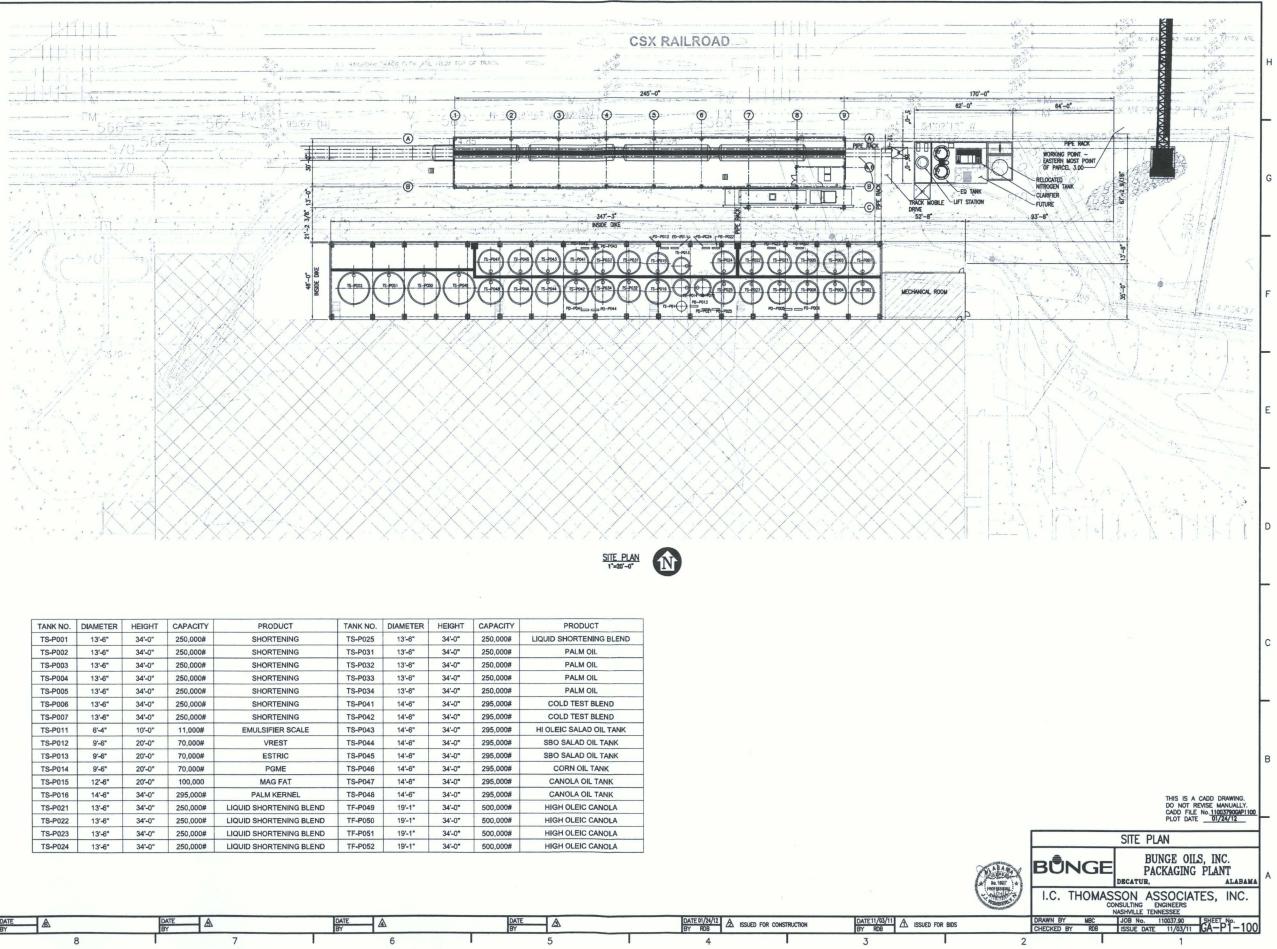
Note: The * indicates that the mean does not satisfy summary criteria.

Page 1 of 3


UNITED STATES ENVIRONMENTAL PROTECTION AGENCY


User ID: MDA				QUICKLO	OK CRI	ITERIA PA	ARAMETERS	5					
Report Request ID:	1714387		Ŗ	Report Code:	A	MP450							Feb. 5, 2019
				GEO	GRAPHI	C SELECT	IONS						
	Tribal										EPA		
	Code S	State County	Site	Parameter	POC	City	AQCR	UAR	CBSA	CSA	Region		
		01 103											
PROTO	COL SELECTIONS												
Parameter													
Classification	Parameter Meth	od Duration	L										
QUICK LOOK	44201												
SE	LECTED OPTIONS								SORT	ORDER			
Option Type			Optior	N Value			Order		C	olumn			
EVENTS PROCESS	ING	EXCLUDE RE	GIONALL	Y CONCURRED	EVENTS	}	i1		PARAM	ETER_COD	Έ		
MERGE PDF FIL				ES			2		STA	TE_CODE			
AGENCY ROLE			PÇ)AO			3		COUN	TY_CODE			
WORKFILE DELIMI	ITER			1			4		SI	TE_ID			
							5			POC			
							6		D	ATES			
							7		El	DT_ID			
DATE	CRITERIA								and - Make Party and		APPLICAB	LE STANDARDS	
Start Date	End Date										Standard	Description	
2015	2017								L		Ozone 1	L-hour 1979	
											Ozone 8	3-Hour 2008	


.


BLOCK FLOW DIAGRAMS AND

SITE PLANS

TANK NO.	DIAMETER	HEIGHT	CAPACITY	PRODUCT	TANK NO.	DIAMETER	HEIGHT	CAPACITY	PRODUCT
TS-P001	13'-6"	34'-0"	250,000#	SHORTENING	TS-P025	13'-6"	34'-0"	250,000#	LIQUID SHORTENING BLEND
TS-P002	13'-6"	34'-0"	250,000#	SHORTENING	TS-P031	13'-6"	34'-0"	250,000#	PALM OIL
TS-P003	13'-6"	34'-0"	250,000#	SHORTENING	TS-P032	13'-6"	34'-0"	250,000#	PALM OIL
TS-P004	13'-6"	34'-0"	250,000#	SHORTENING	TS-P033	13'-6"	34'-0"	250,000#	PALM OIL
TS-P005	13'-6"	34'-0"	250,000#	SHORTENING	TS-P034	13'-6"	34'-0"	250,000#	PALM OIL
TS-P006	13'-6"	34'-0"	250,000#	SHORTENING	TS-P041	14'-6"	34'-0"	295,000#	COLD TEST BLEND
TS-P007	13'-6"	34'-0"	250,000#	SHORTENING	TS-P042	14'-6"	34'-0"	295,000#	COLD TEST BLEND
TS-P011	6'-4"	10'-0"	11,000#	EMULSIFIER SCALE	TS-P043	14'-6"	34'-0"	295,000#	HI OLEIC SALAD OIL TANK
TS-P012	9'-6"	20'-0"	70,000#	VREST	TS-P044	14'-6"	34'-0"	295,000#	SBO SALAD OIL TANK
TS-P013	9'-6"	20'-0"	70,000#	ESTRIC	TS-P045	14'-6"	34'-0"	295,000#	SBO SALAD OIL TANK
TS-P014	9'-6"	20'-0"	70,000#	PGME	TS-P046	14'-6"	34'-0"	295,000#	CORN OIL TANK
TS-P015	12'-6"	20'-0"	100,000	MAG FAT	TS-P047	14'-6"	34'-0"	295,000#	CANOLA OIL TANK
TS-P016	14'-6"	34'-0"	295,000#	PALM KERNEL	TS-P048	14'-6"	34'-0"	295,000#	CANOLA OIL TANK
TS-P021	13'-6"	34'-0"	250,000#	LIQUID SHORTENING BLEND	TF-P049	19'-1"	34'-0"	500,000#	HIGH OLEIC CANOLA
TS-P022	13'-6"	34'-0"	250,000#	LIQUID SHORTENING BLEND	TF-P050	19'-1"	34'-0"	500,000#	HIGH OLEIC CANOLA
TS-P023	13'-6"	34'-0"	250,000#	LIQUID SHORTENING BLEND	TF-P051	19'-1"	34'-0"	500,000#	HIGH OLEIC CANOLA
TS-P024	13'-6"	34'-0"	250,000#	LIQUID SHORTENING BLEND	TF-P052	19'-1"	34'-0"	500.000#	HIGH OLEIC CANOLA

						- Addit T
DATE 01/24/12	ISSUED FOR	CONSTRUCTION	DATE 11/03/11	A	ISSUED FOR BIDS	

	DAIL	/5\	
	BY		
Т			7

LAW MAROT DRYER SPECS AND DRYER STACK TEST RESULTS

Date: 2018-12-06

BUNGE NORTH AMERICA (DECATUR AL) (DEL) Att. IAN MESSMORE 1400 MARKET ST NE DECATUR, AL 35601 Ian.Messmore@bunge.com Phone: 256-301-4006 Fax: 256-301-4039

Project : NEW SC3-5.220 PL2B DRYER

Dear Mr. IAN MESSMORE

It is a pleasure to offer the following solution designed to fit your requirements.

from Clicko

Sylvain Cliche (Ext. : 354) Representative <u>scliche@lmm.info</u>

1150 Brouillette, Saint-Hyacinthe, QC J2T 2G8 T 450 771-6262: | F 450 771-6264 www.lmm.info

Proposed	to:
BUNGE N	orth America (decaturi al) (del)
Attn: IAN	MESSMORE
1400 MA	RKET ST NE
DECATUR	, AL
35601	
Phone:	256-301-4006
Fax:	256-301-4039

(Shipping location:	Same address	
		c	
			/

E-Mail: lan.Messmore@bunge.com

Validity Period of Proposal	Delivery Conditions	Currency	Representative	Lead Time	Taxes	DATE yyyy-mm-dd
30 days	Our Plant	USD	Sylvain Cliche	—	Extra	2018-12-06

Qty

Description & Item No.

Project : NEW SC3-5.220 PL2B DRYER

SECTION 1

SECTION 1,01

- 1 SC3-5.220PL2B LAW Dryer
 - * 3,0 x 5.2 meter grain columns
 - * (20) 1 meter high drying or cooling sections
 - * (3) 1 meter high top buffer reserve sections, reinforced internally.
 - * 2400mm (8') support frame, made of galvanized structural steel
 - * (2) Collecting hopper, complete with access door and level sensors designed for hazardous location
 - * (1) Dryer filling hopper, inlet flange of 24" x 24", made of galvanised steel. Not lined
 - * Collecting hoppers covered with AR400 liners
 - * Dryer fans motor bases modified
- 1 Ventilation system including:
 - * Double inlet air blower with motor mount assembly
 - * (1) 250HP, 1800 RPM, 480V, XPROOF (Class I, Class II, Div.1, GroupD & G) WEG motor (Main fan)
 - * (1) Louver controlled with Rotork actuator: IQT125 FA10 FM Class 1 Div 1
- 1 Lower section filtration system including:
 - * Filters made of 900 microns self cleaning stainless steel mesh
 - * Filters cleaned with rotary arm, fitted with 2 high pressure aspiration nozzles
 - * (6) Rotary filters with 0.75HP, 1800RPM. 480V, XPROOF (Class II, Div.1, Group D & G) WEG motor
 - * (3) Rotary Filter Fans with 15HP, 3600 RPM, 480V, XPROOF (Class II, Div.1, Group D & G) WEG motor
 - * (1) Dust fan with 3HP. 3600 RPM, 480V, XPROOF (Class II, Div.1, Group D & G) WEG motor
 - * (1) Dust screw with 0.75HP, 1800 RPM, 480V, XPROOF (Class II, Div.1, Group D & G) WEG motor
- 1 Hydraulic actuation system for discharge grid and louvre including:
 - * Unit designed for cold weather dryer operation
 - * (2) hydraulic cylinders
 - * 1.5kW, 600VAC, 1ph, 60Hz oil heaten
 - * 2HP, 1800 RPM, 480V, XPROOF (Class II, Div.1, Group D & G) motor for gear pump
 - * All necessary hydraulic solenoids XPRDOF (Class II, Div.1, Group D & G) mounted on the hydraulic unit
 - * Oil tank with low level sensor

Total

1150 Brouillette, Saint-Hyacinthe, QC J2T 2G8 T 450 771-6262 | F 450 771-6264 www.lmm.info

PROPOSAL 18-1408A

STAIRS, CATWALKS AND ACCESS

- 1 Inside catwalks and ladders
- * Inside catwalks and ladders for an easier access to grain columns, temperature probes and rotary filters
- 1 SC3-5.220PL2B LAW dryer catwalks and full access doors to answer most confined space issues.
- 1 Catwalk with railings on the roof of the dryer
- 1 Staircases on the side of the dryer. Provides access to all catwalks
- 1 All painted parts to be galvanized (except all extractor components)

GAS BURNERS, GAS TRAINS, PIPING AND FIELD INSPECTION

- 1 Eclipse AH-MA Pulsed air burners
 - * Bottom Burner: 15 MBTU/h
 - * Top Burner: 17 MBTUh
 - * Note: BTU above are estimated. Enginereed values will be provided later for construction
 - Gas trains designed as per NFPA code including:
 - * Gas regulator designed for 20psig gas supply
 - * All safety devices

1

2

- * Any modification required by local administrative obligation are not included
- 1 On-site gas piping not included:
 - * Gas train pre-assembled
 - * Regulator and safety valve venting as per code not included
- 1 Field approval by local authorithy not included:

CONTROL PANEL, JUNCTION BOXES AND ELECTRICAL PRE-WIRING

- 1 Control panel including:
 - * Control panel for IO. Soft-start and motor starters not inclued
 - * Horner PLC and man-machine interface
 - * Control panel must be installed in an heated room (temperature 10°C and above)
 - * Control panel and junction boxes components using LMM standard
 - Pre-wired junction boxes for bottom and top gas train including:
 - *(2) Panel NEMA 4/12
 - * Panels are mounted on the gas train and all devices installed on the gas train are pre-wired to those junction boxes
 - * All necessary terminal strip
 - * Tech cable and seal tight connections
 - * Cable from this junction box to the control panel is not included
- 2 Junction box for air flow switches and spark generator:
 - *(1) Panel NEMA 4/12
 - * These panels are installed on the dryer pre-assembled modules and components inside the dryer are pre-wired
 - * Panel heater with thermostat
 - * All necessary terminal strip
- 1 Junction box for discharge grid, louver and hydraulic pump components:
 - *(1) Panel NEMA 4/12
 - * No electrical components are pre-wired to this junction box. This box is shipped loose.
 - * All necessary terminal strip
- 3 Junction boxes for temperature probes:
 - *(3) Panels NEMA 4/12
 - * These panels are installed on the dryer pre-assembled modules and components inside the dryer are pre-wired
 - * All necessary terminal strip
- 1 Junction boxe for temperature probes and top grain reserve level sensor
 - *(1) Panel NEMA 4/12
 - * This panel is installed on the dryer pre-assembled module and components inside the dryer are pre-wired
 - * All necessary terminal strip

1150 Brouillette, Saint-Hyacinthe, QC J2T 2G8 T 450 771-6262 | F 450 771-6264 www.lmm.info

PROPOSAL 18-1408A

LMM regularly enriches its products with its latest innovations.

Its products can be modified without notice. The performance / quality is increased when modified.

INSPECTION VISITS AND COMMISSION/NING

- 1 Inspection visits and commissionning
 - 2 LMM supervisor during dryer erection (5 days on-site)
 - LMM supervisor pre-commissionning visit (2 days on-site)
 - 1 Start-up (5 working days worth of labour by an experimented technician at job site)
 - After start-up visit, verification and supplementary training (3 days on site)
 - Travel expenses included

DRYER PRE-ASSEMBLY AND DELIVERY

- 1 Dryer pre-assembly and installation made by experienced millwrigths in St-Hyacinthe including
 - Manpower for dryer pre-assembly
 - · Work supervisor on-site
 - Tools and worker trailers
 - Truck Unloading
 - Lift trucks
 - Some parts (fan ducting, catwalks, etc.) may not be pre-assembled
- 1 Pre-assembled modules loaded on truck including
 - Manpower
 - Packaging and tarping
 - Anchors and frame
 - Cables, turnbuckles, etc.
 - Crane
 - DRAWINGS AND MANUALS
- 1 Shop drawings will include:
 - * General layout
 - * Anchors information with dead and live load
 - * General information on requirement for gas piping
 - * List of end-devices with their location
 - * Discharge hopper flange details and location
 - * Autocad and Adobe format
 - * Delivered a maximum of 16 weeks after order

1 Manuals provided are:

- * Binder with dryer components for on-site assembly
- * Operation and maintenance manual
- * Electronic format only
- 1 Electrical drawings, Engineering and Project Management
 - * Electrical drawings
 - * Engineering and Project Management

SECTION 1.02 Option Vigitiem

- 1 Vigitemp for 5,2m deep dryer with the following description:
 - Tagged temperatures probes installed on 12 steel wires
 - (4) temperature probes junction boxes
 - Mulitconductor cable
 - PLC probe scanner including
 - Analog input modules
 - The system includes the following features:
 - If one of the probe reading reaches a limit, an alarm is displayed but no action is taken
 - The second relay signal can be used to activate an immersion system (not included with the system)
 - Note: The PLC system must be installed in the control room or in an heated environment

1 164 820 \$

44 110 \$

1150 Brouillette, Saint-Hyacinthe, QC J2T 2G8 T 450 771-6262 | F 450 771-6264 www.imm.info

SECTION 2 PAINT

Standard Paint: LMM GREY (RAL-7044)

SECTION 3 TRANSPORT

Shipping point: Our Plant (Freight charges at customer expense)
Transport the dryer from LMM shop (location to be determined) to Decatur (AL)
LMM will provide 2 Beams. The beams are used to carry the modules from the trucks to the dryer
BUNGE will return to LMM the two beams once the dryer is finished building (at BUNGE's expenses)
(3) Flat bed trucks standard required
(18) Drop-deck bed trucks wide load required

SECTION 4 INSTALLATION

Installation NOT INCLUDED - The delivery will be revised if the installation is required

SECTION 5 NOT INCLUDED ITEMS

- * Civils Works
- * Electrical Wiring
- * Motor starters and soft-start for dryer motors
- * Grain Handling Equipment
- * Plumbing Works
- * Receiving, unloading, storage & insurance of goods.
- * Field supervisor & other field works not specified in proposal.
- * Any other item not specified in proposal.

SECTION 6 PAYMENT TERMS

- *These terms are valid only upon Credit Application Approval
 - 30% Partial payment requested with signed contract
 - 20% when 33% of the dryer pre-assembly completed in Vendor plant
 - 20% when 66% of the dryer pre-assembly completed in Vendor plant
 - 20% when 100% of the dryer pre-assembly completed in Vendor plant
 - 10% 15 days after start-up, with a maximum of 90 days after delivery

GRAND-TOTAL : 1 208 930 \$

The sales conditions of LMM are applicables and can be supplied upon request.

PROPOSAL 18-1408A

No charge

Not Included

GENERAL SALES CONDITIONS

- 1 ORDERS AND GUOTATIONS: All orders or quotations are subject to acceptance and approval by the manager of LAW-MARDT-MILPRO, hereafter called «the Company».
- 2 SHIPMENT: The Company cannot be held responsible for delays in delivery caused by circumstances beyond its control,
- 3 DAMAGES AND GUARANTEE: The Company warrants its products against defects in workmanship and material under normal use and service when set up and operated in accordance with factory instructions for a period of one year from date of shipment from its originating plant at St-Hyacinthe, Canada. All obligations and liabilities under this guarantee are limited to repairing or replacing at our option. f.e.b. factory of shipping origin, of such allegedly defective components returned, carrier charges prepaid.

This limited warranty does not apply to normal wear ix ms or any product s which have been subject to misuse, misapplication, neglect (including without limitation, inadequate maintenance), accident, improper installation, modification, adjustment, repair or which had its nameplate altered or removed. All repairs or replacements are made subject to factory inspection of returned parts.

The Company accepts no liability for incidental or consequential charges which include, but are not limited to removal, installation, downtime, etc.... Defects as defined in the above paragraph shall not include decomposition by chamical reaction (corrosion). The materials offered for this application are not to be considered guaranteed against wear and/or corrosion and are subject in all cases to verification and acceptance by the Purchaser.

Guarantee on equipment and accessories furnished by sub-suppliers shall be limited to the guarantee given by the manufacturer of such units. The Company will not assume responsibility for contingent liability through the alleged failure or failures of any of its product or their accessories.

- 4 TAXES AND PERMITS: Purchaser agrees to bear all taxes or permits of any kind now or hereafter imposed on this contract on the manufacture, sale, lease, shipment, installation, possession, or use of the items covered by the transaction. Purchaser will have to produce proof of any tax exemption by supplying a certificate showing numbers and articles of the applicable by-law.
- 5 CANCELLATION: Orders are accepted with the understanding that they are not subject to cancellation except on terms that will indemnify against any loss. The Company and the manufacturers which whom the business is placed.
- 6 INSPECTIONS: No provisions has been made in the quoted price for inspection by federal, provincial or municipal bodies. Where necessary customer shall undertake to provide for such inspection and make any corrections required by the inspectors, at his own expense.
- 7 DWNERSHIP: The Company retains ownership of the equipment presently sold until final payment is received in full. In the event of default of payment in accordance with the conditions herein mentioned and stipulated, the Company shall have the right, at its option, either get full payment of the matured instalments, or to regain possession of the said equipment, without indemnity nor remittance of the instalments received on the sale price, and in the latter case the buyer shall be free of the balance of payments or the notes corresponding thereto.

As long as the sale price has not been paid in full, the buyer shall under penalty of damages and interest incurred by the Company, take reasonable care of the equipment presently sold and inform the Company without delay of Hoy seizure which might be executed on the said equipment.

At least of written agreement, our company will not substitute any equipment or material, change price of any kind, modification or cancellation of actual terms in actual document. Dur representative will keep right to refuse any changes requested by customer if those are very differents from supplied specifications.

In all time, our company will remains the owner of all commercial names, copy right & intellectual property or commercial secret related to that proposal or contract and updated design following start-up or commissionning.

8 INSTALLATION: (where applicable) Unless authorized to writing by the Company, when the installation must be made by the Company, the Purchaser shall not use such equipment before the installation work is completed. Not withstanding any provisions to the contrary herein, it is expressly agreed that if the Company cannot have the work entirely done by its own employees for whatever reasco including, among other things, the obligation to carry out the work by workmen who are not the Company employees following the implementation of any law, regulation or directive from, among other things, the Commission de la construction du Guébec (CCQ) or other similar entity, or any union, syndicate or trade association, the Company may at its sole discretion, by written notice given to the client, end its execution of the work, which will be handed over to the client in the state they where when the Company put an end to the said work, without any recourse by the Purchaser against the Company in this regard

In such case, this agreement will be resolved from the cate of the notice and all amounts owed to the Company for the work done until the date of the notice must be paid in full to the Company within seven (7) days from the date or said notice. Moreover, if the Purchaser wants the Company to carry out the work while complying with the requirements of an entity such as here above mentioned, (being understood that the Company will not be compelled to agree to continue the work), the Purchaser will be responsible for all additional costs incurred by the Company is such discurrestances, being understood that the Company will only resume work while an agreement according to the cost modification will be agreed upon and signed by both percess.

- 9 START-UP AND TRAINING: Normaly this service is not included with this contract. Separate proposal will be supplied by your representative or by our customer service agent. Otherwise a separate item can be previously added to the proposal.
- 10 INSURANCE: The customer shall be responsible for mauring the goods against the risks of fire, theft and public liability from the moment it has been delivered at the requested point.
- 11 PAYMENT: Unless otherwise agreed in writing the goods shall become payable upon delivery independently of the installation date.
- 12 For the purpose of this contract all parties concerned will be considered as having residency in the district of St-Hyacinthe, Quebec., Canada.

law

TRANSPORT T1 S1 T2 S2

T3 S3

T4 M1

T5 M2

T6 M3

T7 M4

T8 M5

T9 M6 T10 M7

T11 M8

T12 M9 T13 M10

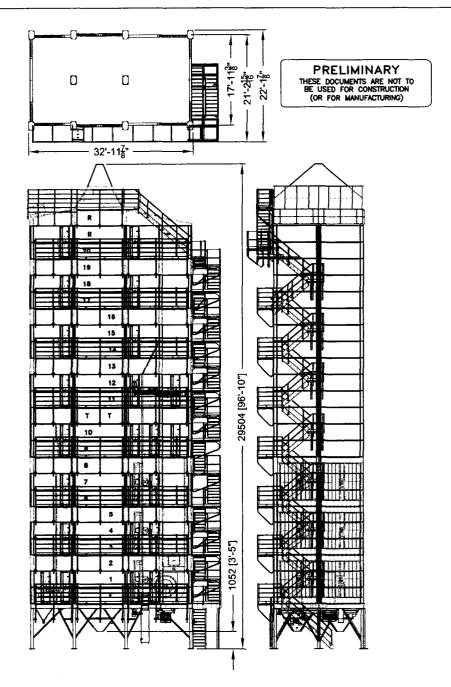
T14 M11

T15 M12

T16 M13

T17 M14

T18 M15


T19 M16 T20 M17

T21 M18

· 6

_		M17	M18
	B10		
	B9	M15	M16
		M13	
	B8		M14
		M11	M12
	87		
	B6	M9	M10
		M7	M8
	B5		
	B4	M5	M6
		M3	M4
	B3		
	2	M1	M2
	82		
	B1	X:X S1	S2

DRYER SC3-5.220PL2B-G2

BUREAU VERITAS

16, Jubin road P.O. BOX 26 69571 Dardilly Cedex Phone : (047) 229-7070 Fax : (047) 835-6310

EMISSION CONTROL GRAIN BIN

CUSTOMER: CEREGRAIN76, Marboz aveP.O. BOX 713001007 BOURG EN BRESSE

BUSINESS

: Silo de VILLEFRANCHE SUR SAONE

69 VILLEFRANCHE SUR SAONE

INTERVENTION DATE

FILE REFERENCE

: November 7th 2000

: LYN9P000109X/Rapport n° 00196 – Indice 0

Did at Dardilly, November 13th 2000

Manager responsable

This report include 12 pages and annexes

62/34, Rennequin Street 75850 Paris Cedex 17 Phone : (014) 054-6474 Fax : (014) 622-0055 Société Anonyme à Directoire et Conseil de Surveillance au capital de 105 122 785 17 bis, place des Reflets La Défense 2, 92400 Courbevoie RCS Nanterre B 775 690 621

http://www.fr.bureauveritas.com

A.PILOTTO

۰

.

SUMMARY

1.	BRIEF DESCRIPTION OF THE INSTALLATION
2.	PURPOSE OF THE INTERVENTION
3.	INTERVENTION PROCEDURE 3
4.	MATERIALS AND METHODS3
5.	RESULTS4

1. BREF DESCRIPTION OF THE INSTALLATION

The grain storage bin, operated by the CEREGRAIN company, and installed in the industrial and port area of VILLIFRANCE SUR SAONE, is composed among others, of the following :

1 Grain Dryer type 99 SRD / BT /C3

- Production of hot air : Natural gas boiler
- Filtration : Lower air (metallic screens with 950 microns opening stainless steel wire mesh)

- Upper air (flat filter in 1 000 microns opening stainless steel)

No-chimney outlet

The used air corridor is equipped with 6 non-normalized (12 cm x 12 cm) flanges located close to the used air exhaust shutters

2. PURPOSE OF THE INTERVENTION

To measure, during the corn harvest season, the dryer total dust concentration and hourly flow rate.

3. INTERVENTION PROCEDURE

The intervention was conducted on November 7th 2000 in order to run the test at the rated dryer capacity.

Incoming throughput : 2 300 tons/day Upper hot air temperature: 100° C Lower hot air temperature : 90 ° C

4. MATERIAL AND METHODS

Described in Annex 2

.

5. RESULTS

ESTABLISHMENT CONTROL DATE	CEREGRAIN – VILLEFRANCHE (69) 07/11/00								
CONTROL PARAMETER	Total dust Concentration on dry gas	Hourly flow Of humid gas	Average Hourly dust flow	Maximum concentration allowed by authorities					
UNIT	Mg/Nm ³	Nm ³ /h	Kg/h	Mg/Nm ³					
DRYER	3.8	53500	1.92	50					

ANNEXES

- Annex 1 : Calculation Form
- Annex 2 : Material
- Annex 3 : Intervention procedure
- Annex 4 : Detailed Results

Annex 1 : Calculation Formulas

CALCULATION FORMULAS

Note : The purpose of this is to explain the calculation formulas used in the different spreadsheets for the determination of the results presented in this report.

MOISTURE LEVEL

Normal volume of sampled dry gas in $Nm^3 = Vng$ Normal volume of related steam in $Nm^3 = Vnva$ Condensed mass of water in the line in $g = MH_2O$

% of Moisture on humid $gas = \frac{Vnva * 100}{(Vng + Vnva)}$

where $Vnva = \frac{22.4 * MH_2O}{18} * 10 E^{-3}$

TO CONVERT A LEVEL ON DRY GAS INTO A LEVEL ON HUMID GAS

Level on dry gas = Tgs Gas moisture level in % = Thg

Level on humid gas = Tgs * (100 - Thg)100

TO CONVERT A LEVEL ON HUMID GAS INTO A LEVEL ON DRY GAS

Level on humid gas = Tgh Gas moisture level in % = Thg

Level on dry gas = Tgh * $\frac{100}{(100-Thg)}$

TO SHOW A LEVEL OF CO2 ON HUMID GAS IN %

Level of CO₂ on humid gas measured in % = TCO2 Level on humid gas to show = Tgh

Showed level of CO₂ on humid gas at $x\% = Tgh * \frac{x}{TCO2}$

TO SHOW A LEVEL OF CO2 ON DRY GAS IN %

Level of CO₂ on dry gas measured in % = TCO2 Level on dry gas to show = Tgs

Showed level of CO₂ on dry gas at $x\% = Tgs * \underline{x}$ TCO2

TO SHOW A LEVEL OF O₂ ON DRY GAS IN %

Level of O₂ on dry gas measured in % = TO2 Level on dry gas to show = Tgs

Showed level of O₂ on dry gas at x% = Tgs * (21 - x) / (21 - TO2)

TO CONVERT A LEVEL EXPRESSED IN ppm INTO A LEVEL EXPRESSED IN mg/Nm³

Gross ppm level = Tppm Molar masse of gas in g/mol = Masse mol.

Level expressed in mg/Nm³ = Tppm * <u>Masse mol.</u> 22.4

TO EXPRESS A GROSS GAS VOLUME IN NORMAL CONDITIONS

Local atmospheric pressure in mbar = Patmo Gas temperature in $^{\circ}C = O$ Gross gas volume in $m^{3} = Vgb$

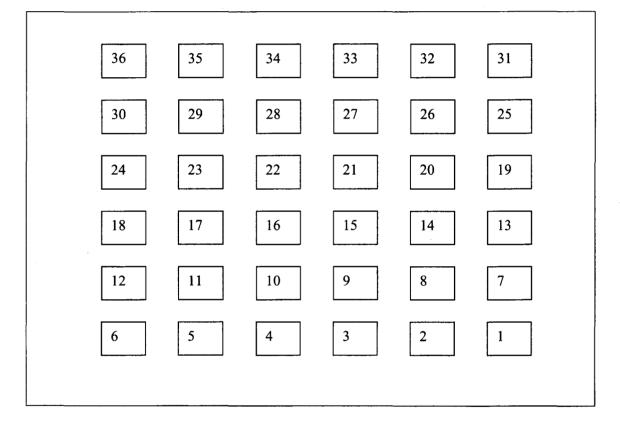
Gas volume expressed in normal conditions in $\text{Nm}^3 = \text{Vgb} * \frac{\text{Patmo} * 273}{(273 + \text{O}) * 1013}$

GAS DENSITY

Dry smoke density = §f Sucked water vapour density = §H2O Humidity level = TH2O Molar mass of an x component = Mx

Gas density = \$f * (100 - TH2O) + \$H2O

Where $\$f = \frac{MC02}{22.4} * \frac{TC02}{100} + \frac{MO2}{22.4} * \frac{TO2}{100} + \frac{MN2}{22.4} * \frac{(100 - TC02 - TO2)}{100}$


and $\$H20 = \frac{MH2O}{22.4} * \frac{TH2O}{100}$

ANNEX 2 : Materials

PARAMETERS	MATERIAL AND METHOD	REFERENCE	SENSIBILITIES
Atmospheric pressure	Baromete ⁻	_	0.5 mbar
Temperature	Type K (chromel-alumel) thermocouple and Chauvin Arnoux numeric Thermometer or pick-up central equipped with universal Inlet	NF EN60584- 1	0.1 °C
Throughput, dynamic and static pressure	CETIAT (coefficient 1) type pitot tube + KIMO differential numerical micromanometer	NF X 10 112 ISO 10780	0.1 daPa
Weight	Sartorius and Mettler precision scale	-	0.1 mg
Humidity	Pumping then absortion by silica gel after condensation (use of diaphragm pump, gas meter and thermometer)	_	1%
Dust	Sampling done in isocinetism on a frame perpendicular to the gas flow. Chartered device EMISSION SA type MPM 80 with stainless steel probe	NF X 44 052	0.1 mg/Nm3
Filter	Fiberglass filter, without binder, 118 mm or 90 mm clameter holdup efficiency of 99.9% for NaCL particles of 0.6 micrometer average. Guaranteed composition in traces of elements	_	_

ANNEX 3

SAMPLE PICK UP SECTION

WIDTH : 2.4 meter according to the contracter LENGTH : 12 meter

Right length uphill< 5 Dh

Right length downstream< 5 Dh

	DISTAN	NCE BETWE	EN SAMPLI	NG POINTS		
Points 6, 12, 18, 24	4, 30 and 30	6 were not acc	cessible with	the probes that	at were on sit	e that day.
. , ,	•			•		
points	1	2	3	4	5	6
-						
Distance in cm	20	60	100	140	180	220
On the axe						

ANNEX 4

RESULTS SPREADSHEETS				
JOB SITE		CEREGRAIN- Villefranche		
DATE		07/11/00		
LOCATION OF CONTRO	OL	Dryer		
DUCTING TYPE		Rectangular ducting		
PARAMETERS	UNIT	RESULTS		
Local atmospheric pressure	mbar	970		
Static pressure in ducting	mbar	1.8		
Gas temperature	C	38		
Level of carbon dioxide on J y gas	%	0		
Level of carbon dioxide on humid gas	%	0		
Level of oxygen on dry gas	%	20.9		
Level of oxygen on humid gas	%	5.4		
Gas average density	kg/Nm ³	1.26		
Average speed of gas	m/s	6.1		
Gas throughput in experimentae conditions	m³/h	637240		
Gas throughput in normal conditions	Nm ³	535633		
Actual total duration of sampling	min	63		
Volume of gas sampled	Nm ³	5.289		
Weight of dust sampled	mg	19		
Level of dust on humid gas on gross (sample)	mg/Nm ³	3.6		
Level of dust on dry gas on cross (sample)	mg/Nm ³	3.8		
Hourly flow weight	kg/h	1.924		

ANNEX 4

.

RESULTS SPREADSHEETS				
JOB SITE		CEREGRAIN- Villefranche		
DATE		07/11/00		
LOCATION OF CONTR	OL	Dryer		
DUCTING TYPE	r	Rectangular DUCTING		
PARAMETERS	UNIT	RESULTS		
Meter display - Start	m³	19.464		
Meter display - Finish	m ³	19.758		
Condensated water volume	ml	8		
Weight of water in silicagel	g	4		
Gas temperature on meter	c	18		
Local atmospheric pressure mbar		970		
Normal volume of sampled dry gas Nm ³		0.264		
Normal volume of related water Nm ³		0.015		
Humidity level on humid gas	%	5.4		

GAS DENSITY				
PARAMETERS UNIT RESULTS				
Level of carbon dioxide on dry gas	%	0		
Level of oxygen on dry gas	%	20.9		
Level of humidity on humid gas	%	5.4		
Density of humid gas	Kg/Nm ³	1.26		

•

~

GAS FLOW IN DUCTING				
PARAMETERS UNIT RESULTS				
Area of sampling section	m²	28.800		
Average speed of gas in sampling section	m/s	6.1		
Gas throughput in experimental conditions	m³/h	637240		
Gas throughput in normal conditions	Nm ³ /h	535633		

DUST PICK-UP CONDITIONS					
JOB SITE				CEREGRAIN-	Villefranche
	DATI	E		07/11/	00
LOC	ATION OF	CONTROL		DRYE	R
	DUCTING	TYPE		Rectangula	r ductina
Diaph	nragm	···· _	Depi	ression	
	erature	150°C		erature	300 mbar
		15.5	Coeff	ficient K	21.5
N° sampling points	Dynamic pressure (daPa)	Speed (m/s)	Differentiel Pressure (daPa)	Sampling Duration (min)	Weight of dust Sampled
1	0.0	0.0	0	0	0.000
2	0.0	0.0	0	0	0.000
3	1.8	5.8	39	3	0.168
4	5.2	9.9	112	3	0.284
5	6.0	10.6	129	3	0.305
7	0.0	0.0	0	0	0.000
8	0.0	0.0	0	0	0.000
9	1.5	5.3	32	3	0.152
10	5.0	9.7	107	3	0.278
11	6.0	10.6	129	3	0.305
13	0.0	0.0	0	0	0.000
14	0.0	0.0	0	0	0.000
15	2.8	7.3	60	3	0.208
16	6.0	10.6	129	3	0.305
17	6.6	11.3	146	3	0.325
19	0.0	0.0	0	0	0.000
20	1.0	4.3	22	3	0.128
21	3.3	7.9	71	3	0.226
22	6.0	10.8	129	3	0.305
23	6.5	11.1	140	3	0.318
25	0.0	0.0	0	0	0.000
26	1.4	5.1	30	3	0.147
27	3.5	8.1	75	3	0.233
28	6.0	10.6	129	3	0.305
29	7.5	11.9	161	3	0.341
31	0.0	0.0	0	0	0.000
32	1.0	4.3	22	3	0.126
33	3.0	7.5	65	3	0.217
34	5.5	10.2	118	3	0.292
35	6.8	11.3	145	3	0.325
	Average		Total		

.

1 . p

BUNGE NORTH AMERICA DECATUR, ALABAMA

BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS

PARTICULATE MATTER EMISSIONS (PM)

February 2019

TABLE OF CONTENTS

EXECUTIVE SUMMARY	4
1.0 INTRODUCTION	5
2.0 PROJECT AND PROCESS DESCRIPTION	6
3.0 ESTIMATED PARTICULATE MATTER EMISSIONS BASIS	8
4.0 ECONOMIC ANALYSIS ASSUMPTIONS	
4.1 Cost Assumptions	
4.2 Cost of Compliance	
4.3 Cost Effectiveness	
5.0 CONTROL TECHNOLOGY FEASIBILITY	11
5.1 List of Control Options and Elimination of Technically Infeasible Options	11
5.1.1 Basis for Identification of Applicable Options	
5.1.2 Basis for Determination of Technical Feasibility of Options	
5.1.2.1 Baghouse (Fabric Filter) for Dry Particulate Exhaust	19
5.1.2.2 Cyclone for High Moisture Content Particulate Exhaust	20
5.1.2.3 Centrifugal collector	21
5.1.2.4 Cartridge Filters	
5.1.2.5 Packed/Tray-gas Absorption Column	
5.1.2.6 Spray Tower	21
5.1.2.7 Venturi Scrubber	22
5.1.2.8 Metal Fabric Filter Screen	22
5.1.2.9 Wet Cyclonic Separator	
5.1.2.10 Boiler	22
5.1.3 Basis for Rejection of Options	22
5.1.3.1 Gravity Collector	23
5.1.3.2 Electrostatic precipitators (ESPs)	23
5.1.3.3 Mist Eliminator	23
6.0 RANK REMAINING CONTROL TECHNIQUES BY EFFECTIVENESS	
6.1 Exhaust Vent Streams	
6.2 Utility Boiler	
6.3 Grain Dryer	
7.0 CONCLUSIONS	
References	27

Table 5-2	Table 5-1	
Table 6-2 25		
Table 6-2 25	Table 6-1	

EXECUTIVE SUMMARY

The proposed modification at the Bunge North America Decatur, Alabama facility will involve the modification of several emission units that have potential to emit particulate matter emissions. Particulate Matter (PM) emissions from this project are subject to Prevention of Significant Deterioration (PSD) regulations, since the potential PM emissions will exceed 25 tons per year. Because the Soybean Processing Facility located in Decatur, Alabama will be subject to PSD regulations; an analysis of Best Available Control Technology (BACT) must be conducted. The sources of PM emissions addressed in this BACT Analysis consist of particulate sources with dry exhaust streams, particulate exhaust streams with high moisture content, and combustion unit (utility boiler).

The controlled PM emissions from new or operationally modified sources are:

Sources	PM
Exhaust Streams (wet & dry)	40.7
Fugitive Dust	39.8
Combustion Units	7.3
Total	84.6

The purpose of this BACT analysis is to determine a control technology for the PM emissions that would be considered BACT. As part of this effort, the technologies listed in Section 5, which are used to control particulate matter emissions from industrial process sources, were evaluated in terms of their technical feasibility in controlling emissions of particulate matter. The technologies for particulate matter controls were divided into several groups:

- Dry Exhaust Streams
- Exhaust Streams with High Moisture Content
- Combustion sources (Utility boiler)

Based on the BACT analysis, the following are proposed as BACT for the following particulate matter (PM) sources:

Emissions Source	Proposed BACT
Dry Exhaust Streams	Fabric Filter dust collectors that achieve an outlet grain loading of approximately 0.002 grains per dry standard cubic feet of air flow
Exhaust Streams with High Moisture Content	High efficiency cyclones
Utility Boiler	Use of clean fuels like natural gas and good combustion practices

1.0 INTRODUCTION

The Clean Air Act (CAA) and regulations promulgated by the Alabama Department of Environmental Management (ADEM) require that major air pollution sources undergoing construction comply with all applicable Prevention of Significant Deterioration (PSD) provisions and Nonattainment area New Source Review Requirements. The Federal PSD rules apply to areas classified as attainment and new major stationary sources (sources with a potential to emit 250 tons/year or more of any criteria pollutant). The EPA regulations require that a major stationary source undergoing a major modification apply Best Available Control Technology (BACT) for each regulated PSD pollutant that it would have the potential to emit in significant amounts. BACT need not necessarily result in an emissions control device. Rather, BACT is an emission limitation made on a case-by-case basis taking into consideration several project-specific factors. In no case, however, is BACT allowed to be less stringent than the emissions limits established by an applicable New Source Performance Standards (NSPS).

In EPA policy and interpretative documents, the Agency has generally called for a separate BACT analysis for each emissions unit at a facility. However, the EPA has supported a logical grouping of emission units and considered controls available for individual pollutants. This evaluation will be based on logical grouping of emission units and controls available for particulate matter (PM).

The EPA has implemented the "top-down" method for determining BACT, which ADEM follows. In general, the top-down process requires that all available control technologies be ranked in descending order of emission control effectiveness. The following is a step-by-step description of a typical top-down BACT analysis.

- 1) Identify all control technologies;
- 2) Eliminate technically infeasible options;
- 3) Rank remaining control technologies by emission control effectiveness;
- 4) Evaluate most effective controls and document results; and,
- 5) Select BACT.

2.0 **PROJECT AND PROCESS DESCRIPTION**

Soybean oil processing typically consists of oilseed handling/elevator operations (receiving, storing, and cleaning the raw soybeans); preparing the soybeans for the solvent extraction and oil desolventizing, oil refining, and desolventizing and processing the spent soybean flakes.

Soybeans received at the facility are sampled and analyzed for moisture content, foreign matter, and damaged seeds. The beans are weighed and conveyed to silos for storage prior to processing. The beans are then removed from the silo and cleaned of foreign material and loose hulls. An aspiration system is used to remove loose hulls from the soybeans. The beans are passed through dryers to reduce their moisture content and then conveyed to process bins for temporary storage and tempering for 1-5 days in order to facilitate dehulling. The soybeans are then processed in a succession of preparation operations prior to extraction. These operations include cracking, dehulling, and flaking. Hulls are ground and sent to storage. Some are pelletized before shipment.

Flakes are conveyed to the solvent extraction system where they are mixed with solvent and vegetable oil is extracted from the flakes. The solvent oil mixture is processed to remove the solvent from the oil. The "spent" flakes are sent through a series of operations to desolventize, dry, and cool the flakes. The resulting soybean meal is ground and transferred to storage, From there, the meal is loaded out by truck, rail or barge for shipment off-site.

Some support facilities are needed for this plant. They include boilers, cooling towers, emergency generator, and fire water pump engines.

The emission units that are going to be physically modified as part of this project are:

- The addition of a new grain dryer (CD-6);
- A new bean storage bin wil be added and will be exhausted to an existing baghouse (CD-3).
- The addition of a new vertical bean conditioner and the removal of the existing rotary steam tube bean conditioner (PR-3);
- Existing cracking mills will be replaced but will exhaust to the existing baghouse with the existing fan. (PR-4).
- Four new flaking mills and accompanying conveying equipment will be added to the existing flaking system. A new farr and baghouse will be installed to accommodate the new equipment (PR-7).

- Replacement of the existing Desolventizer Toaster/Dryer Cooler (DTDC) with 2 separate units; A new DT and a new DC will be added with new conveying equipment, new cyclones and a new fan (EX-2).
- Equipment as part of the existing solvent distillation system in extraction will be replaced VOC emissions (EX-1).
- A new, larger utility boiler will be added and an existing boiler will be removed (B05).

3.0 ESTIMATED PARTICULATE MATTER EMISSIONS BASIS

The estimated baseline and projected actual PM emissions are summarized in Tables 1-5 in Section 2 of the PSD Permit Application Project and Permitting Process document enclosed herewith. Emissions calculations are included in Appendix A of that document. Table 5 provides the projected increases from the proposed modifications and illustrate that the project triggers PSD review for particulate matter (PM) and volatile organic compounds (VOCs).

4.0 ECONOMIC ANALYSIS ASSUMPTIONS

A significant part of the BACT analysis deals with cost effectiveness and comparisons of the various technically feasible options. The following defines the approach that would be used if a cost effectiveness evaluation is required.

4.1 Cost Assumptions

- Capital and operating costs for new equipment are available from EPA (EPA-450/3-79-006)
- The prices for utilities will be based on site-specific data for electricity and natural gas.
- An interest rate of 8% with 15-year equipment life would be used.

4.2 Cost of Compliance

For the BACT analysis, capital costs of compliance are annualized.

- i. Total Annual Costs = Indirect Annual Costs + Operations & Maintenance Costs
- ii. Indirect Annual Costs = Capital Recovery Factor (CRF) x Total Installed Cost (TIC)

Where:

Capital Recovery Factor (CRF) =
$$\frac{i(1+i)^n}{((1+i)^n-1)}$$

Life of Equipment, n = 15 years
1

Annual Interest Rate, i = 8%

Yielding:

4.3 Cost Effectiveness

Cost effectiveness is used to assess the potential for emissions reduction in the most economical way. For BACT analyses, it is defined as dollars per ton of emissions removed (\$/ton).

The analysis evaluates capital, operating, and maintenance costs for the various control options. The cost effectiveness is used to evaluate which control options are economically feasible.

Annual Cost Effectiveness

Emissions removal is calculated for each technology or technique, and the \$/ton of emission removed would be calculated as:

Total Annualized Costs of Control Option
(Baseline Annual Emissions - Control Option Annual Emissions)

Based on assumed 15-year life for new equipment (EPA/452/B-02-001).

5.0 CONTROL TECHNOLOGY FEASIBILITY

The definition of BACT requires that emission controls for each emission source and each pollutant of concern be evaluated on a case-by-case basis, taking into consideration energy, environmental, and economic impacts and other costs. Only commercially available and field-proven technologies need to be investigated. If the control technology has been installed and operated successfully on the type of source under review, it is demonstrated and it is technically feasible (EPA, 1990). Options may also be eliminated when they have unacceptable energy, cost, or non-air quality environmental impacts. Options for only the sources physically modified will be reviewed.

5.1 List of Control Options and Elimination of Technically Infeasible Options

An initial list of potential technologies was developed using the following information sources:

- EPA RACT/BACT/LAER Clearinghouse (RBLC) database
- EPA AP-42. Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Air Sources. Appendix B. September 1996. This document provides a list of control technologies and removal efficiencies for several particle size ranges.
- Stationary Source Control Techniques Document for Fine Particulate Matter; EPA Contract No. 68-D-98-026; October 1998
- EPA Air Pollution Control Cost Manual EPA/452/B-02-001; January 2002
- EPA-452/F-03-015 (CATC Technical Bulletins (TB) & Air Pollution Technology Fact Sheets (FS))
- Recently Issued permits for Soybean Processing Facilities

Based on a recent database query of permits issued up to July 2018, the following BACT determination related to the listed sources were identified and presented in Table 5.1 below:

Facility	Date	RBLC ID #	Emission Unit	BACT Requirements
Northstar Agri	5/11/2018	OK-0156	1.Dry Process	1.Control Method:
Industries			Exhausts	Baghouse
				Emission Limit: PM10 -
				0.0050 gr/dscf 3-hr avg
			2. Wet/Moist	2. Control method: High
			Exhausts	Efficiency Cyclones
				Emission Limit: PM10 -
				0.13 gr/dscf 3-hr avg.
			3. Fugitive PM	3. Pave Haul Roads
Northstar Agri		MN-0086	1. Seed Prep,	1. TPM – Cyclones
Industries			Pellet Cooler,	Emission Limit: 0.0260
			Can-Pass,	gr/dscf
			meal Cooler,	
			Cookers	
AG Processing	08/18/2015	NE-0059	1.Grain	1.Control Method:
Inc.		(draft)	Receiving via	Baghouse
Soybean			Rail	Emission Limit: 0.0030
Processing				gr/dscf of Filterable PM
Facility				(FPM) and PM10 3-hour or
				test method average.
			2.Grain dryer	2.Control Method: None
				Emission Limit: 0.0030
				gr/dscf of Filterable PM
				(FPM) and PM10 and
				6.440 lb/hr. 3-hour or test
				method average.
			3. Millfeed	3. Control Method:
				Baghouse. Emission
				Limit: 0.0030 gr/dscf of
				Filterable PM (FPM) and
				PM10 and 0.72 lb/hr. 3-
				hour or test method

Table 5.1-Summary of RBLC Database Review

	average.
4. Rotary	4. Control Method: None
Conditioner	Emission Limit: 0.10
	gr/dscf of Filterable PM
	(FPM) and 0.26 lb/hr.
	PM10 – 0.061 gr/dscf &
	0.16 lb/hr. 3-hour or test
	method average.
5. Flaker with	5. Control Method: None
Process Cyclone	Emission Limit: 0.0080
	gr/dscf of Filterable PM
	(FPM) and 0.96 lb/hr.
	PM10 – 0.008 gr/dscf &
	0.59 lb/hr. 3-hour or test
	method average
6.Meal Grinding	6.Control Method:
Gimear Ormuniy	Baghouse. Emission
	Limit: 0.0030 gr/dscf of
	Filterable PM (FPM) and
	PM10 and 0.39 lb/hr.
	3-hour or test method
	average
7.Meal Bins	7. Control Method:
	Baghouse. Emission
	Limit: 0.0030 gr/dscf and
	0.08 lb/hr of Filterable PM
	(FPM) and PM10. 3-hour
	or test method average
8.Calcium Bin	8. Control Method:
	Baghouse. Emission
	Limit: 0.0030 gr/dscf and
	0.04 lb/hr of Filterable PM
	(FPM) and PM10. 3-hour
	or test method average
9. Grain Cleaning	9. Control Method:

 	Baghauga Emission
	Baghouse. Emission
	Limit: 0.0030 gr/dscf of
	Filterable PM (FPM) and
	PM10 and 0.44 lb/hr. 3-
	hour or test method
	average
10. Dryer/Cooler	10. Control Method: Wet
	Venturi Scrubber
	Emission Limit: 0.0025
	gr/dscf and 1.16 lb/hr of
	Filterable PM (FPM).
	PM10 - 0.0025 gr/dscf and
	0.71 lb/hr. 3-hour or test
	method average
11.Grain	11.Control Method:
Receiving via	Baghouse.
truck and Grain	Emission Limit: 0.0030
Handling – 6	gr/dscf and 0.82 lb/hr
units	of Filterable PM (FPM) and
	PM10. 3-hour or test
	method average
12.DDGS and	12. Control Method:
Pellet Storage	Baghouse. Emission
/loadout	Limit: 0.0030 gr/dscf and
	0.75 lb/hr of Filterable PM
	(FPM) and PM10. 3-hour
	or test method average
13. Mill Feed	13. Control Method:
Receiving	Baghouse. Emission
	Limit: 0.0030 gr/dscf and
	0.03 lb/hr of Filterable PM
	(FPM) and PM10. 3-hour
	or test method average
	Ŭ
14.Pellet Cooler	14. Control Method:

	[1	······································	Bachouse
				Baghouse.
				Emission Limit: 0.0030
				gr/dscf and 0.33 lb/hr of
				Filterable PM (FPM).
1				PM10: 0.003 gr/dscf and
				0.20 lb/hr. 3-hour or test
				method average
			15.Cooling Tower	15.Control Method: Drift
			,	loss design spec and TDS
				conc. limit. Emission Limit
				for TPM: 0.0005% drift
				loss. 3000 ppm – once
				per month
			16. 2 – 200 mm	16.Control Method: None
			btu/hr boilers -	Emission Limit for PM10 -
				0.0074 lb/mmbtu – natural
				gas. 3 hr or test method
				average.
				NESHAP
American	05/29/2015	MO-0081	1.Grain receiving	1.Control Method: Partial
Energy		(final)	and transfer	enclosures and intake
Producers, Inc.				hoods directed to a
Soybean				Baghouse
Processing				Emission Limit: 0.0030
Plant				gr/dscf of Filterable PM10
				(FPM10) test method
				average
			2.Meal and hull	2.Control Method: Partial
			loadout	enclosures and intake
				hoods directed to a
				Baghouse
				Emission Limit: 0.0030
				gr/dscf of FPM10 test
				method average

3.Aspirator,	3. Control Method:
cascade dryer,	controlled by one or more
cascade cooler,	cyclones. The exhaust
jet dryer,	from the fines aspirator will
hullosenator,	be routed to a baghouse
bean cracker,	Emission Limit: 0.0030
secondary	gr/dscf of FPM10. test
aspirator and hull	method average
pellet cooler	method average
4.Vertical seed	4. Control Method:
conditioner and	
	Conditioner controlled by
flaking operations	cyclones. Flaking
	operation controlled by a
	cyclone and then a
	baghouse. Emission Limit:
	0.0060 gr/dscf of FPM10
	test method average
5.Hull grinding	5. Control Method:
	Baghouse. Emission
	Limit: 0.0030 gr/dscf of
	FPM10. Test Method
	Average
6.Meal grinding	6. Control Method:
	Baghouse. Emission
	Limit: 0.0030 gr/dscf of
	FPM10. Test Method
	Average
7.Meal drying	7. Control Method: Each
decks and meal	deck is controlled by a
cooling deck	minimum of one cyclone.
	Emission Limit: 0.0050
	gr/dscf of FPM10 Test
	Method Average.
	mounou Average.
	9 Control Mothod: Douter
8. Haul Roads	8. Control Method: Paving

	T			all haul roads, watering,
				washing and cleanings of
				all haul roads as
				necessary to control
				fugitive emissions.
			9. Cooling	9. Control Method: High
			Towers	efficiency drift eliminators.
			10. Two-95	10. Control Method: None
			MMBtu/hr boilers	Emission Limit: 0.0072
				Ib/MMBtu of TPM when
				combusting natural gas.
				0.0236 lb/MMBtu limit
				applies only when
				combusting fuel oil. test
				method average
			11. DE hopper	11. Control Method:
			and silica hopper	Baghouse
Bunge North	05/07/2007	IA-0085	1.Flaker	1. Control Method:
-	00/01/2001			
America		(final)	Aspiration	Baghouse
_				
_				Baghouse
_				Baghouse Emission Limit: 0.0060
_				Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3
_			Aspiration	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average
_			Aspiration	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None
_			Aspiration	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080
_			Aspiration	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060
_			Aspiration	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average 3. Control Method: None –
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average 3. Control Method: None – cyclone recovery
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average 3. Control Method: None – cyclone recovery considered part of process
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average 3. Control Method: None – cyclone recovery considered part of process unit. Emission Limit:
_			Aspiration 2.Expander	Baghouse Emission Limit: 0.0060 gr/dscf of PM based on 3 hours average 2. Control Method: None Emission Limit: 0.0080 gr/dscf of PM and 0.0060 gr/dscf for FPM10 based on 3 hours average 3. Control Method: None – cyclone recovery considered part of process unit. Emission Limit: 0.0075 gr/dscf of PM and

5.1.1 Basis for Identification of Applicable Options

The list of available options was determined based on literature review and review of RBLC database. The table below (Table 5.2) provides a list of available control technologies for particulate matter controls:

Control Technology Reviewed	Control Technology Carried Forward? (Yes/No)	Comment
Gravity collector	No	Technically feasible but not carried forward due to very low efficiency compared to other technologies
Electrostatic precipitator	No	The use of a high voltage current to remove highly explosive grain dust particulate from a gas stream would be catastrophic. This control is not well demonstrated in the grain industry, and is considered technically infeasible.
Mist eliminator	No	Technically not feasible because this technology is applicable only for liquid particulate matter
Fabric Filter System (baghouse)	Yes	Technically feasible
Cyclones	Yes	Technically feasible and more effective for high moisture content particulate matter
Centrifugal collector	Yes	Technically feasible and more effective for high moisture content particulate matter
Fabric Filter System (cartridge filter)	Yes	Technically feasible
Packed/Tray-gas absorption column	Yes	Technically feasible as the PM material need not be soluble in water for removal
Spray tower	Yes	Technically feasible
Venturi Scrubber	Yes	Technically feasible
Metal fabric filter screen	Yes	Technically feasible
Wet cyclonic separator	Yes	Technically feasible

5.1.2 Basis for Determination of Technical Feasibility of Options

This section provides information on the technologies that were determined to be technical feasibility, and the reason for their feasibility. To select an appropriate control device to propose as BACT, control options were compared to the characteristics of the waste stream, the source type, and the air contaminants of concern. These unique characteristics were considered in selecting control equipment and establishing specific control effectiveness. The character of the air contaminant also dictates the choice of control devices.

5.1.2.1 Baghouse (Fabric Filter) for Dry Particulate Exhaust

Baghouses are commonly used to control dry exhaust stream particulate emissions. The collection efficiency of a baghouse (fabric filter system) for particle size in the range 6-10 μ m is 99.5% (EPA, 1995). Filters and dust collectors (baghouses) collect PM by passing gases through a fabric that acts as a filter. The most commonly used is the bag filter, or baghouse. The various types of filter media include woven fabric, needled felt, plastic, ceramic, and metal. The operating temperature of the gas stream influences the choice of fabric. Accumulated particles are removed by mechanical shaking, reversal of the gas flow, or a stream of high-pressure air.

Advantages:

- 1. Relative insensitivity to gas stream fluctuations and large changes in inlet dust loadings (for continuously cleaned filters).
- 2. Recirculation of filter outlet air.
- 3. Dry recovery of collected material for subsequent processing and disposal.
- 4. No corrosion problems.
- 5. Simple maintenance.
- 6. As high voltage is not present, baghouses have the ability to collect flammable dust.
- 7. High collection efficiency for dry exhaust streams.
- 8. Relatively simple operation.

Disadvantages:

- 1. Need for fabric treatment to remove collected dust and reduce seepage of certain dusts
- 2. Relatively high maintenance costs
- Explosion and fire hazard of certain dusts at concentration of ~50 g/m³ in the presence of accidental spark or flame, and fabric fire hazard in case of readily oxidizable dust collection
- 4. Shortened fabric life at elevated temperatures and in the presence of acidic or alkaline

particulate or gas constituents

5. Potential crusty caking or plugging of the fabric, or need for special additives due to moisture or tacky materials.

The use of the baghouse filter is considered technically feasible for control of particulate matter emissions from dry exhaust streams. The collection efficiency of a fabric filter system for particle size in the range 6-10 μ m is 99.5%.

5.1.2.2 Cyclone for High Moisture Content Particulate Exhaust

Cyclones are used to control PM, and primarily PM greater than 10 micrometers in aerodynamic diameter. High efficiency cyclones are designed to be effective for PM less than or equal to 10 micrometers and less than or equal to 2.5 micrometers (PM10 and PM2.5). The collection efficiency of cyclones varies as a function of particle size and design. High efficiency single cyclones can remove 5 micrometer particles at up to 90 percent efficiency, with higher efficiencies achievable for larger particles. The control efficiency ranges for high efficiency single cyclones are 80 to 99 percent for PM, 60 to 95 percent for PM10 and 20-70 percent for PM2.5.

For high moisture content exhaust streams present at soybean processing plants, the application of baghouses to control particulate emissions from these facilities would likely result in bag failures. Due to removal of moisture in the drying and cooling process, the exhaust gas from this equipment is at or close to saturation conditions and condensation inside the baghouse would blind the filter media. For fabric filter operations with high moisture gas streams, heat addition would be required to raise the gas stream temperature 100 deg F above the dew point temperature. For fabric filter operations in potentially solvent rich areas such as the Dryer and Cooler, explosive suppression would also be required to ensure the required safety. For these reasons, Bunge proposes to use high-efficiency cyclones for the dryers and coolers that have high moisture content exhaust streams. The cyclones are considered an inherent part of the process for product recovery though and not control technology.

Advantages:

- 1 Low Capital cost
- 2 No moving parts, therefore, few maintenance requirements and low operating costs
- 3 Relatively low pressure drop, compared to amount of PM removed
- 4 Temperature and pressure limitations are only dependent on the materials of construction
- 5 Can remove high moisture particulates and dry particulates
- 6 Relatively small space requirement

Disadvantages:

- 1 Relatively low PM collection efficiencies, particularly for PM less than 10 micrometer in size
- 2 Unable to handle sticky or tacky materials
- 3 High efficiency units may experience high pressure drops
- 4 Higher pressure drops may translate to higher energy usage and operating costs
- 5 Higher efficiency units are exceedingly large and may require more space than is available

5.1.2.3 Centrifugal collector

Removal of PM is achieved by centrifugal and inertial forces, induced by forcing particulate-laden gas to change direction. This type of technology is a part of the group of air pollution controls collectively referred to as "precleaners," because they are oftentimes used to reduce the inlet loading of particulate matter (PM) to downstream collection devices by removing larger, abrasive particles. Centrifugal collector is technically feasible and so it is carried forward to the next step for control effectiveness evaluation.

5.1.2.4 Cartridge Filters

Cartridge filters serve the same function as the bags in standard fabric filter baghouse, but selfcontained cartridges (rather than bags) are used for PM capture (EPA, 2003). The removal efficiency of a cartridge filter is generally less than the baghouse filter (EPA, 2000) as shown in Table 6.1 below. As this is technically feasible, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.5 Packed/Tray-gas Absorption Column

This type of technology is a part of the group of air pollution controls collectively referred to as "wet scrubbers." Removal of air pollutants is achieved by inertial or diffusional impaction, reaction with a sorbent or reagent slurry, or absorption into liquid solvent (EPA, 2003). The collection efficiency of a Packed/Tray-gas absorption column for particle size in the range 6-10 μ m is 99% (EPA, 1995). As this is technically feasible for particulate matter, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.6 Spray Tower

This type of technology is a part of the group of air pollution controls collectively referred to as "wet scrubbers." Removal of air pollutants is achieved by inertial or diffusional impaction, reaction with a sorbent or reagent slurry, or absorption into liquid solvent (EPA, 2003). The collection efficiency of a spray tower for particle size in the range 6-10 μ m is 90% (EPA, 1995). As this is technically feasible, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.7 Venturi Scrubber

This type of technology is a part of the group of air pollution controls collectively referred to as "wet scrubbers." Venturi scrubbers are also known as venturi jet scrubbers, gas-atomizing spray scrubbers, and ejector-venturi scrubbers. Removal of air pollutants is achieved by inertial and diffusional interception. The collection efficiency of a venturi scrubber for particle size in the range 6-10 μ m is 99% (EPA, 1995). As this is technically feasible, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.8 Metal Fabric Filter Screen

The collection efficiency of a metal fabric filter screen for particle size in the range 6-10 μ m is 20% (EPA, 1995). As this is technically feasible, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.9 Wet Cyclonic Separator

Wet cyclonic separator uses a combination of centrifugal force and water spray to enhance control efficiency. The collection efficiency of a wet cyclonic separator for particle size in the range 6-10 μ m is 85% (EPA, 1995). As this is technically feasible, it is carried forward to the next step for control effectiveness evaluation.

5.1.2.10 Boiler

The new main boiler will be fired on natural gas. Emissions from these sources will be inherently low due to firing of natural gas which contains only trace amounts of noncombustible material. Therefore, the use of post-combustion controls to further reduce particulate matter emissions would not be effective. A review of the RBLC database for natural gas fired units revealed that the listed sources did not use any post-combustion particulate matter (PM) control device to meet BACT standards. The database indicates that natural gas fired boilers utilize good combustion practices as a means of minimizing particulate emissions. Based on the above, the use of good combustion practices and use of natural gas are proposed as BACT for particulate matter.

5.1.3 Basis for Rejection of Options

This section provides information on the technologies that were not selected due to technical infeasibility, and the reason for their infeasibility.

5.1.3.1 Gravity Collector

Removal is achieved by reducing the gas velocity to enable the dust to settle out by the action of gravity. This type of technology is a part of the group of air pollution controls collectively referred to as "precleaners" because they are oftentimes used to reduce the inlet loading of particulate matter (PM) to downstream collection devices by removing larger, abrasive particles. A gravity collector is technically feasible but not carried forward due to very low efficiency (< 10%) compared to other technologies.

5.1.3.2 Electrostatic precipitators (ESPs)

Electrostatic precipitators (ESPs) remove particles by using an electrostatic field to attract the particles onto the electrodes. Collection efficiencies for well-designed, well-operated, and well-maintained systems are typically in the order of 99.9% or more of the inlet dust loading, based on the particle size distribution. ESPs are especially efficient in collecting fine particulates and can also capture trace emissions of some toxic metals with an efficiency of 99%. They are less sensitive to high temperatures than are fabric filters, and they operate with a very low pressure drop. Their consumption of electricity is similar to that of fabric filters. ESPs have been used for the recovery of process materials such as cement, as well as for pollution control. They typically add 1–2% to the capital cost of a new industrial plant. The use of a high voltage current to remove highly explosive grain dust particulate from a gas stream would be catastrophic. This control is not well demonstrated in the grain industry, and is considered technically infeasible.

5.1.3.3 Mist Eliminator

In some cases, gaseous contaminants may be removed from a gas stream by contacting the contaminated gas stream with a spray of a liquid stream. This results in dissolution of the gaseous contaminants in the droplets of the liquid, which become entrained in the gas stream. Mist eliminators or entrainment separators intercept the gas stream to remove the entrained droplets. This technology is technically infeasible because it is applicable only to remove liquid droplets and not solid particulates like the ones found in the soybean processing plant.

6.0 RANK REMAINING CONTROL TECHNIQUES BY EFFECTIVENESS

This section evaluates the relative effectiveness of the options deemed technically feasible in reducing the impact of emissions, regardless of cost. Table 6.1 below lists the control technologies in descending order of efficiency.

6.1 Exhaust Vent Streams

Table 6.1 Ranking of Control technologies by efficiency (in descending order).

Control Technology Reviewed	Removal Efficiency	Control Technology Carried Forward? (Yes/No)	Comment
Fabric Filter System (baghouse)	99.5%	Yes	The baghouse is determined to be the top control as it has the highest efficiency for dry exhaust stream particulate emissions.
High Efficiency Cyclones	80-99%	Yes	The cyclone is determined to be the top control for high moisture content particulate matter.
Centrifugal collector	95%	No	Inferior. Low efficiency (50-95% for 10 μm particles, depending on the configuration) compared to other technologies
Fabric Filter System (cartridge filter)	99%	No	Inferior because of lower removal efficiency at the working velocity.
Packed/Tray-gas absorption column	50-95%	No	Inferior because of lower removal efficiency for PM. Limited to streams with low inlet PM concentrations. High maintenance costs could be incurred. Liquid waste stream disposal issue.
Spray tower	90%	No	Inferior because of lower removal efficiency. Liquid stream to dispose of.
Venturi Scrubber	70-99%	No	Inferior. High pressure drop, large amounts of wastewater produced and contaminated PM to dispose of.
Wet cyclonic separator	85%	No	Inferior because of lower removal efficiency and can't handle sticky materials.
Metal fabric filter screen	20%	No	Inferior. Very low removal efficiency.

6.2 Utility Boiler

Pollutant	Available Control Alternatives	Selected BACT option?	Negative Impacts	Emission Rate	Average Cost Effectiveness (\$/ton)
РМ	Ored Combustion	Yes	N/A		N/A
PM ₁₀	Good Combustion Practices; use of natural gas fuel	Yes	N/A	7.6 Ib/MMSCF	N/A
PM _{2.5}		Yes	N/A		N/A

Table 6.2 Ranking of Control technologies

6.3 Grain Dryer

The review of permits for soybean processing facilities does not reveal any controls for grain dryer The Decatur facility is proposing to install a grain dryer equipped with filters made of 900 micron selfcleaning stainless steel mesh. In addition, a set of rotary filters will assist in controlling dust from the exhaust. This technology is inherent to the design of grain dryers.

7.0 CONCLUSIONS

This BACT Analysis is developed in support of a PSD permit application for emissions of particulate matter from Bunge North America's Decatur, Alabama soybean processing plant. This BACT analysis indicates that the only particulate matter control technologies that are both technically feasible and cost effective are as follows:

- Fabric Filter dust collectors that achieve an outlet grain loading of approximately 0.002 grains per dry standard cubic feet of air flow are considered BACT for emissions with dry particulate exhaust streams. This control will be utilized for most units that generate dry exhaust streams. This control has the highest control efficiency for all feasible control technologies. Therefore, average cost effectiveness was not calculated.
- High efficiency cyclones that achieve an outlet grain loading of approximately 0.025 grains per standard cubic feet of air flow are considered BACT for emission units with high moisture content. This control technology has the highest control efficiency for particulate matter emissions with high moisture content. Therefore, average cost effectiveness was not calculated.
- Particulate matter emissions from the utility boiler will be minimized through the use of clean fuels like natural gas and good combustion practices.

Proposed BACT Limits and Technology for Bunge North America							
EP-ID	Description	Status	Existing Control	Proposed Control	Proposed Limit	Units	
CD-6	Grain Dryer	New	-	Stainless Steel Screens	0.0017	gr/scf	
CD-3	New Bean Storage Bin	New	Baghouse	Baghouse*	0.002	gr/scf	
PR-4	Cracking Mills	Nev/	Baghouse	Baghouse*	0.002	gr/scf	
PR-6	Bean Conditioner	New/ Replacement	Cyclone	Cyclone	0.025	gr/scf	
PR-7	Flaking Aspiration	New	Baghouse	Baghouse	0.002	gr/scf	
D1	Meal Dryer	New	Cyclone	Cyclone	0.025	gr/scf	
D2	Meal Dryer	New	Cyclone	Cyclone	0.025	gr/scf	
D3	Meal Dryer	New	Cyclone	Cyclone	0.025	gr/scf	
D4	Meal Dryer	New	Cyclone	Cyclone	0.025	gr/scf	
C1	Meal Cooler	New	Cyclone	Cyclone	0.025	gr/scf	
C2	Meal Cooler	New	Cyclone	Cyclone	0.025	gr/scf	
B05	Main Boiler	New	Good Combustion Practices	Good Combustion Practices	0.005	gr/scf	

Table 7-1

*Will use existing baghouses.

References

- 1. EPA Air Pollution Control Technology Fact Sheet (EPA-452/F-03-005, EPA-452/F-03-015)
- 2. EPA. (1990). New Source Review Workshop Manual. USEPA.
- 3. EPA. (1995). AP-42. Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Air Sources. Appendix B. Research Triangle Park, NC: US EPA.
- 4. EPA Air Pollution Control Cost Manual EPA/452/B-02-001; January 2002
- 5. EPA. (2003). CATC Technical Bulletins (TB) & Air Pollution Technology Fact Sheets (FS). USEPA. Retrieved March 27, 2014, from http://www.epa.gov/ttncatc1/products.html#aptecfacts

BUNGE NORTH AMERICA DECATUR, ALABAMA

BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS

VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS

February 2019

EXECUTIV	E SUMMARY	
1.0 INTRO	DDUCTION	5
2.0 PROC	ESS DESCRIPTION	6
3.0 ESTIN	IATED VOC EMISSIONS BASIS	7
4.0 CONT	ROL TECHNOLOGY EFFECTIVENESS & COST ANALYSIS	9
4.1	List of Control Options and Elimination Technically Infeasible Options	9
4.1.1		
4.1.2	VOC Control Technology Options Analysis	
4.2	Discussion on Technical Feasibility/Infeasibility – Main Vent	
4.2.1		
4.2.2		
4.2.3	Absorption System (Mineral Absorption System)	
4.2.4		
4.3	Discussion on Technical Feasibility/Infeasibility – Meal Processing	
4.3.1	Thermal or Catalytic Oxidation	
4.3.2	Carbon Adsorption	
4.3.3	Optimization of Desolventizer Toaster/Dryer/Cooler	
4.4 BA	CT Analysis for New Boiler	
4.4.1	BACT Clearinghouse Analysis New Main Boiler	
4.4.2	VOC Control Technolcឧy Options Analysis	
5.0 RANK		21
6.0 EVAL	JATION OF MOST EFFECTIVE CONTROL TECHNIQUE(S)	
7.0 CONC	LUSIONS	
8.0 RE	FERENCES	
Table 3-1.		7
Table 6-1.		

Table of Contents

EXECUTIVE SUMMARY

This Best Available Control Technology (BACT) Analysis is developed in support of the Prevention of Significant Deterioration (PSD) permit application for emissions of Volatile Organic Compounds from the Bunge North America soybean extraction plant in Decatur, Alabama. The proposed modification at this soybean manufacturing facility involves the use of a Volatile Organic Compound (VOC) – hexane - for extracting oil from soybeans. A significant increase in VOC emissions will occur with this plant expansion. The sources of the hexane emissions from this process are:

- fugitive emissions
- mineral oil absorber
- Meal dryer and meal cooler (DC stacks)
- Meal and Oil Product (negligible source of VOC)

A BACT analysis was performed for each physically or operationally modified emission unit that emits VOCs and is associated with the expansion project. A new natural gas fired boiler will also be added in support of the expansion. The combustion of natural gas also results in volatile organic compound emissions.

The purpose of this BACT analysis is to determine a control technology for the VOC emissions that would be considered BACT. As part of this effort, the following technologies, which are used to control VOC emissions from industrial process sources, were evaluated for hexane extraction: VOC Destruction control and VOC Recapture Control. VOC destruction control includes regenerative thermal oxidizer (RTO), recuperative thermal incineration and catalytic incinerator. The VOC recapture control consists of activated carbon adsorption, absorption system and condensation system.

Good combustion practices were evaluated for the new boiler and described below.

The following is a summary of the results of the BACT analysis:

- 1. RTOs and Incinerators have not been proven to control VOC emissions from soybean oil extraction plants as this project is not aware of any applications of this technology to existing solvent extraction plants.
- 2. Incineration, RTO and carbon adsorption of the point source emission streams are considered a serious safety concern.
- The facility will meet BACT as defined in EPA's BACT/LAER Clearinghouse, which will require the use of a mineral-oil scrubber with a 99% control efficiency to limit VOC emissions in the extraction process. Good combustion practices will be adhered to for the new boiler.
- 4. Due to the nature of the operation and the difficulty in quantifying emissions from the mineral oil scrubber, compliance would be based on the overall solvent losses as measured by VOC inventory measures. The majority of the hexane emission limits come from the design of the equipment. This set of equipment is

such that more emissions are controlled by the absorber and less by the meal dryers and meal cooler. Therefore, the real performance of the plant is determined by the overall Hexane emission rate in terms of gallons per ton of soybean processed or crushed.

- 5. For the conventional soybean extraction process, Bunge proposes as BACT the limit of 0.19 gallons of solvent per ton of soybean processed or crushed as set forth in the "Consent Decree". The methodology of 40 CFR Part 63, Subpart GGGG-National Emission Standards for Hazardous Air Pollutants-Solvent Extraction for Vegetable Oil Production (Vegetable Oil Production MACT) shall be used to monitor and demonstrate compliance.
- 6. Boiler MACT identifies work practice standards boiler tune-ups as the method to reduce hexane emissions from natural gas combustion.

1.0 INTRODUCTION

The Clean Air Act (CAA) and regulations promulgated by the Alabama Department of Environmental Management (ADEM) require that major air pollution sources undergoing construction comply with all applicable Prevention of Significant Deterioration (PSD) provisions and Nonattainment area New Source Review (NSR) Requirements. The Federal PSD rules apply to areas classified as attainment and sources with a potential to emit 100 tons per year or 250 tons/year or more of any pollutant depending on the classification of the facility. The major source threshold for Soybean manufacturing is 250 tons per year of any criteria pollutant.

The expansion at the Decatur plant is classified as a major modification for VOCs because its potential VOC emissions exceed 40 tons per year in an attainment area. The regulations of the EPA and ADEM require that a major modification at a major stationary source subject to PSD apply Best Available Control Technology (BACT).

The EPA defines BACT as "an emissions limitation (including a visible emission standard) based on the maximum degree of reduction for each regulated NSR pollutant which would be emitted from any proposed major stationary source or major modification which the Director, on a case-by-case basis, taking into account energy, environmental, and economic impacts and other costs." In no case is BACT allowed to be less stringent than the emissions limits established by an applicable New Source Performance Standard (NSPS).

In EPA policy and interpretative documents, the Agency has generally called for a separate BACT analysis for each emissions unit at a facility. However, the EPA has supported a logical grouping of emission units and considered controls available for individual pollutants. This evaluation will be based on logical grouping of emission units. Controls available for individual pollutants will be considered.

For BACT analysis, the EPA has implemented the "top-down" method for determining BACT, which ADEM follows. In general, the top-down process requires that all available control technologies be ranked in descending order of emission control effectiveness. The following is a step-by-step description of a typical top-down BACT analysis:

- 1) Identify all control technologies and process alternatives;
- 2) Eliminate technically infeasible options;
- 3) Rank remaining control technologies by emission control effectiveness;
- 4) Evaluate most effective controls and document results and eliminate any technology with unacceptable impacts; and,
- 5) Select the remaining most effective control technology as BACT.

2.0 PROCESS DESCRIPTION

At the Decatur, Alabama soybean extraction facility, vegetable oil is extracted from the soybeans using hexane as a solvent. Solvent is emitted from the extraction of the oil with hexane, from desolventizing and further processing of the extraction products (oil and meal).

During solvent extraction, hexane is used to wash the processed raw materials (flaked soybeans), in a countercurrent extractor. Two product streams emerge from the extractor: solvent laden flakes and a solvent-oil mixture. The extraction is followed by filtration and separation of the two streams. Hexane is removed from the solvent-oil mixture through distillation, and from the flakes through a desolventizer toaster. The hexane vapor is recovered by condensers and in the mineral oil absorber. The recovered solvent is returned to storage to be reused. The "crude" oil is transferred to storage tanks before being further processed. The desolventized flakes are then ground for use as soybean meal.

Recommended abatement techniques to prevent and control VOCs include the following: process improvement and abatement technologies. Process improvement techniques include: proper recovery of solvents by distilling the oil from the extractor and implementing leak prevention systems. Abatement technologies include: recovery of solvent vapors from the desolventizer-toaster by use of condensers to treat condensates with high solvent content, and treatment of remaining hexane-laden air from the condensers/reboilers with a mineral oil scrubber.

Ancillary equipment includes natural gas fired boilers to provide steam for the above mentioned processes.

3.0 ESTIMATED VOC EMISSIONS BASIS

Volatile Organic Compounds (VOCs) are the principal emissions from soybean oil extraction processes. The VOC emissions are caused by the use of the oil-extraction solvent, hexane. The sources within the soybean oil processing plant that generate solvent emissions include the extractor main vent system, the meal dryer exhaust air, meal cooler exhaust air, and fugitive losses. The largest single source of VOC emissions in soybean oil plants is the extractor. It is estimated that 50 to 70 percent of the emissions from soybean oil plants would be lost from the extractor if the extractor vent (main vent) is controlled with only a chilled water condenser. Extractor emissions can be reduced 95-99 percent with a properly designed and operated mineral oil absorber installed after the condenser on the main vent.

Another 11 to 32 percent of VOC emissions are lost from the post-desolventizer dryer and cooler exhaust vents. A portion of the solvent retained in the desolventized flakes is evaporated in the dryer and cooler and vented to the atmosphere. Add-on controls on post-desolventizing vents (dryer, cooler vents) are unapplied to this source due to safety concerns. In fact, the National Soybean Products Association has raised doubts regarding the safety of add-on controls on these vents. Another source of VOC emissions in soybean oil plants is fugitive emissions. Since these losses result mainly from leaks and spill, control is best affected by an adequate maintenance and housekeeping program. Additional small losses occur from processing of the meal and oil. As was stated earlier, trace amounts of solvent remain in the meal and oil after the extraction process. Some of this solvent is emitted to the atmosphere as the meal and oil are processed further.

The VOC losses from emission sources within the respective processes are summarized below in Table 1. The sources below are being operationally modified and are subject to BACT.

	Table 3-1 - VOC Emission	5
Source Description	VOC Control Method	Percentage of Loss
		(%)
Main Vent (Extractor Vent)	Mineral Oil Absorber (MOA)	20
Post-Desolventizer Vents (Dryer and Cooler Vents)	None	4.5
Refining	None	2.8
Hexane Storage	None	0.1
Meal Product	None	14.6
Fugitive Loss	Maintenance and	58

Table 3-1 - VOC Emissions

	housekeeping program	
Total from Extraction Processes		100%
New Boiler	Good Combustion Practices	1.84 TPY

4.0 CONTROL TECHNOLOGY EFFECTIVENESS & COST ANALYSIS

The definition of BACT requires that emission controls for each emission source and each pollutant of concern be evaluated on a case-by-case basis, taking into consideration energy, environmental, and economic impacts and other costs. Only commercially available and field-proven technologies need to be investigated. If the control technology has been installed and operated successfully on the type of source under review, it is demonstrated and it is technically feasible (USEPA, 1990).¹

Options may also be eliminated when they have unacceptable energy, cost, or non-air quality environmental impacts.

4.1 List of Control Options and Elimination Technically Infeasible Options

The first step in a BACT analysis is to identify all available control technologies. An initial list of potential technologies was developed using the following information sources:

- EPA RACT/BACT/LAER Clearinghouse
- 40 CFR 63, Subpart GGGG-National Emissions Standard for Hazardous Air Pollutants -Solvent Extraction for Vegetable Oil Production
- EPA's Economic Impact Analysis for the NESAHPs regulation (EPA-452/R-01-005)
- Recently Issued permits for Soybean Processing Facilities

The following sections present a detailed discussion of each of the BACT information and controls.

4.1.1 BACT Clearinghouse Analysis – Solvent Extraction Process

This step is undertaken by first reviewing the RACT/BACT/LAER Clearing house (RBLC) database on VOC control technologies in Soybean Manufacturing facilities or similar. This database contains BACT determinations made and approved by different State Agencies for similar sources and processes.

Based on a database query of permits issued up to July 2018, the following BACT determinations related to soybean manufacturing processes were identified and presented in Table 4.1 below.

¹ EPA New Source Review Workshop Manual, October 1990

Facility	Date	RBLC ID #	Emission Unit	VOC BACT Requirements
Cargill, Inc.,	07/05/2013	IA-0115 (draft)	Soybean	Control Method: Mineral Oil
Sioux City			Extraction	Absorber System
Soybean Oil			Process	Emission Limit: 0.14 Gal/ton -
Extraction Plant				12 month rolling average
				Emission Limit: 737.76
				tons/year -12 month rolling
				average
Perdue	1/29/18	PA-0308	1.Soybean Oil	1. Control Method: Good Work
Agribusiness,		(final)	Extraction Plant	Practices and LDAR;
LLC / Marietta				Emission Limit:0.028 lb/ton
				SLR ; 7.24 tons
			2.Meal Dryer	2. Control Method: LDAR;
				Emission Limit: 0.023 lb/ton ;
				50.42 tons any 12-month
				rolling total
		-		3. Control Method: LDAR;
			3.Meal Cooler	Emission Limit: 0.102 lb/ton;
				25.21 tons any 12-month
		1		rolling total
Perdue	11/02/2017	VA-0327	1. Soybean	1. Control Method: Mineral Oil
Agribusiness,		(final)	Extraction	Absorber System Emission
LLC			Process	Limit: 0.152 Gal/ton -12 month
				rolling average
			2. Equipment	2. Control Method: Leak
			Leaks	Detection and Repair (LDAR)
				Monitoring System
			3.4 – 27	3. Control Method : None
			mmBTU/hr boilers	Emission Limit: 0.1 lb/hr
			4. Emergency	4. Control Method : None
			Generator	Emission Limit: 0.49 lb/hr
			5. 2 Grain Dryers	5. Control Method : None
				Emission Limit: 0.21 lb/hr
Archer Daniels	07/06/2016	IA-0111 (final)	1.Extractor and	1. Control Method: Mineral Oil
Midland			Desolventizer	Absorber System and Good
Company			Toaster Dryer	Operating Practices.

Table 4.1-Summary of RBLC Database Review – Soybean Extraction Plants

Des Moines			Cooler	Emission Limit: 0.14 gal/ton -
Soybean				12 month rolling average
Processing				788 tons/year -12 month rolling
Plant				total
			2. Equipment	2. Control Method: Leak
			Leak	Detection and Repair (LDAR)
				Monitoring System.
				Emission Limit: 788 tons/year -
				12 month rolling total
Consolidated	06/08/2016	IN-0209 (final)	1. Extraction	1. Control Method: Mineral Oil
Grain and Barge			System	Absorber System (99.5%
Company				efficient).
Soybean Oil				Emission Limit:0.048 lb/ton
Extraction Plant			2.Overall Solvent	2. Control Method: None
			Loss Ratio	Emission Limit: 0.19 Gal/ton
			3. DTDC Dryers	3. Control Method: None
				Emission Limit: 0.1520 lb/ton
			4.DTDC Cooler	4. Control Method: None
				Emission Limit: 0.1520 lb/ton
AG Processing	03/23/2016	IA-0103 (final)	Soybean Oil	Control Method: Mineral Oil
Sergeant Bluff			Extraction	Scrubber (99.9% Eff).
				Emission Limit:0.1450 Gal/ton
				12-month rolling average
AG Processing	08/18/2015	NE-0059	Soybean	Control Method: Mineral Oil
Inc.		(draft)	Extraction	Absorber System. During
Soybean			Process	SSM, the source must comply
Processing				with 40 CFR 63.2852.
Facility				Emission Limit: 381.26 ton/yr -
				12 month rolling total
			2 – 200 mmBtu/hr	Control Method: None
			natural gas and	Emission Limit: 0.0054
			fuel oil – fired	lb/mmBtu
L			boilers	

American	05/29/2015	MO-0081	1.Extraction	1. Control Method: Condenser
Energy		(final)	System	and a Mineral Oil Absorber
Producers, Inc.				with Chiller System
Soybean				Emission Limit: 0.0560 lb/ton
Processing			2.Desolventizing-	2.Control Method: Evaporators
Plant			Toasting	and a Mineral Oil Absorber
				System
Archer Daniels	04/15/2015	MO-0082	1.Soybean Oil	1. Control Method: use of
Midland		(final)	Extraction	condensation for solvent
Company				recovery and uncondensed
Soybean				vapors routed to a Mineral Oil
Processing				Absorber.
Plant				Emission Limit 1: 0.15 gal/ton-
				12 month rolling average
				excluding malfunction period.
				Emission Limit 2: 0.1710
				Gal/ton-12 month rolling
				average including malfunction
				period.
			2.Dual Fired 85.6	2. Emission Limit: 0.0055
			MMBtu/hr Water-	lb/MMBtu when burning natural
			tube Boiler	gas and 0.0010 lb/MMBtu
				when burning other fuels
Louis Dreyfuls	08/13/2013	IN-0150 (final)	1.Soybean Oil	1. Control Method: Combined
Agricultural			Extraction Plant	Condenser and Mineral Oil
Industries LLC				Scrubber System.
Soybean				Emission Limit:0.048 lb/ton
Processing			2.Meal Dryers	2.Emission Limit: 0.03 Gal/ton
Facility	,			
			3.Meal Cooler	3.Emission Limit: 0.03 Gal/ton
			4.Overall Solvent	4. Emission Limit: 0.141
			Loss Ratio	Gal/ton
			5. Fugitive	5. Enhanced LDAR Program
			Hexane Loss	_
		1		
	<u> </u>			

Archer Daniels	02/24/2009	NE-0048	1.Soybean Oil	1. Control Method: Mineral Oil
Midland-		(final)	Extraction	Scrubber
Fremont				Emission Limit: 0.1650 lb/ton
Soybean Oil				12 month rolling total including
Manufacturing				SSM periods
Plant			2.Fugitive	2.LDAR
			Emissions	

4.1.2 VOC Control Technology Options Analysis

VOC control technology options fall into two distinct categories: VOC destruction control and VOC recapture control: VOC destruction control includes regenerative thermal oxidizer (RTO), recuperative thermal incineration and catalytic incinerator. The VOC recapture control consists of activated carbon adsorption, absorption system and condensation System.

4.1.2.1 VOC Destruction Control Methods

The list of potentially applicable VOC Destruction control methods are listed in the table below:

Control Technologies Reviewed	Control Technologies Carried Forward (Yes/No)	Comment
Regenerative Thermal Oxidizer (RTO)	No	Technically infeasible
Recuperative thermal incineration	No	Technically infeasible
Catalytic incineration	No	Technically infeasible

4.1.2.2 VOC Recapture Control Methods

The list of potentially applicable VOC Recapture control methods are listed in the table below:

Control Technologies Reviewed	Control Technologies Carried Forward (Yes/No)	Comment
Condensation	No	Technically infeasible
Absorption	Yes	Technically feasible
Carbon Adsorption	No	Technically infeasible

Table 4-3 VOC Recapture Control Technologies

4.2 Discussion on Technical Feas bility/Infeasibility – Main Vent

The following discussion provides information on how the technologies to be carried forward for further evaluation were selected. To select an appropriate control device to propose as BACT, control options were compared to the characteristics of the waste stream, the process, the source type, and the air contaminants of concern. These unique characteristics were considered in selecting control equipment and establishing specific control effectiveness. The character of the air contaminant also dictates the choice of control devices. This section provides information on the technologies selected for additional review.

4.2.1 Regenerative Thermal Oxidizer or Equivalent Incineration System

Incineration or thermal oxidation is the process of oxidizing combustible materials by raising the temperature of the material above its auto-ignition point in the presence of oxygen, and maintaining it a at high temperature for sufficient time to complete combustion to carbon dioxide and water. VOC destruction efficiency depends upon design criteria (i.e., combustion chamber temperature, residence time, inlet VOC concentration, compound type, and degree of mixing). Typical thermal incinerator design efficiencies range from 95 to 98+% and above, depending on system requirements and characteristics of the contaminated stream. The typical requirements/design conditions needed to meet most regulatory requirements are a destruction efficiency of at least 98% or an exit concentration of no more than 20 parts per million by volume (ppmv).

A straight thermal incinerator is comprised of a combustion chamber and does not include any heat recovery of exhaust air by a heat exchanger. The heart of the thermal incinerator is a nozzle-stabilized flame maintained by a combination of auxiliary fuel, waste gas compounds, and supplemental air added when necessary. Upon passing through the flame, the waste gas is heated from its inlet temperature to its ignition temperature. The

ignition temperature varies for different compounds and is usually determined empirically. It is the temperature at which the combustion reaction rate exceeds the rate of heat losses, thereby raising the temperature of the gases to some higher value. Thus, any organic/air mixture will ignite if its temperature is raised to a sufficiently high level.

Thermal incinerators (regenerative and recuperative) can be used to reduce emissions from almost all VOC emission points, including reactor vents, distillation vents, solvent operations, and operations performed in ovens, dryers, and kilns. They can handle minor fluctuations in flow. Their fuel consumption is high, so thermal units are best suited for smaller process applications with moderate-to-high VOC loadings.

Regenerative Thermal Oxidizers and Incinerators have not been proven for use in controlling VOC emissions from soybean oil extraction plants. This project is not aware of any application of these control devices to any solvent extraction plant. The reason may be because the exhaust from the mineral oil absorber will include small amount of oil in aerosol form. The aerosol is likely to cause carbonization and degradation of packing in an RTO leading to a loss of heat transfer. Any degradation of the packing system would make the RTO ineffective in controlling VOC emissions. Therefore, the use of an RTO on the outlet of the main process vent is considered technically infeasible.

In a catalytic incineration system, the process vent gases are heated by a burner up to incineration temperature. The gas then passes through the catalyst, which enhances the destruction of the VOCs by decreasing the amount of energy required for incineration and lowering the fuel requirements over a standard flame.

The exhaust from the meal dryer/cooler will include particulate materials. The packing material and the inlet screen in the regenerative part of an RTO are susceptible to plugging by particulate matter. The potential plugging will cause the RTO to malfunction. Additionally, the cooler's low exhaust temperature and high gas volume tend to affect this reduction method. Therefore, an RTO to control VOC emissions for the meal dryer/cooler is technically infeasible for this application.

In addition to the technical problems associated with an RTO, RTOs and incineration are not feasible for safety reasons. The National Fire Protection Agency (NFPA) standards for solvent extraction plants require that any flame operations such as RTOs be located at least 100 feet from the process area³. These standards also require that barriers are located between the extraction process and the possible source of vapor ignition and shall be at least 15 m (50 ft.) from the extraction process. This is to prevent any flashbacks into the process area. The presence of fugitive hexane vapors at the plant and the presence of an open flame from an RTO present an unacceptable risk of explosion and fire hazard. Therefore, this control technology was not carried into the cost, environmental, and energy impact analyses phase of the BACT evaluation as it was considered not technically feasible.

4.2.2 Activated Carbon Adsorption

Carbon adsorbers have been used principally to control the emission of VOC. Control efficiencies of carbon adsorption systems vary, depending on the characteristics of the organics, the variety of organics, the presence of moisture, and the properties of the carbon. Carbon systems have varying effectiveness for streams with mixtures of compounds, compounds with molecular weights less than 100, and streams with high humidity. Often, adsorbed compounds can be stripped by other compounds in the waste stream. Organic compounds are classified into four categories based on the adsorptive capacity of carbon (Norit, 2007). Hexane is placed in Category 3 with a rating of satisfactory adsorption capacity. Substances are adsorbed as well, but not as efficiently as substances with a 4 rating. One pound of activated carbon adsorbs about 10 to 25% of its weight – average about 1/6 (16.7%), with a rating of high adsorptive capacity by carbon.

Carbon Adsorption system is not used to control VOC emissions in soybean oil extraction facilities for technical and safety reasons. These technical and safety reasons can be classified into three aspects including sulfur plugging of the carbon, overheating and limitation of capacity. Carbon Adsorption systems were widely used in the 1950s. In the late 1950s, mineral oil absorption systems began to replace carbon units. The identified technical issues for carbon adsorption systems are very much the same as the RTO/Incineration units. The aerosol oil in the mineral oil absorber exhaust and the PM in the meal dryer/cooler exhaust causes fouling of the carbon bed. Additionally, soybeans naturally contain small amounts of sulfur compounds that could cause fouling of the carbon bed. While the PM concentrations in the meal dryer/cooler exhaust can be reduced by a high efficiency filtration system, the aerosol oils and sulfur compounds cannot be efficiently removed.

From a safety standpoint, carbon adsorption system is considered not feasible for soybean oil extraction facilities because the absorption of hexane unto carbon causes an exothermic reaction. This issue is more pronounced during an upset in the plant. During upset conditions, concentration of hexane increases and causes additional heat build-up in the carbon bed. Overheating could make the carbon adsorbers a potential source of ignition. Therefore, this control technology was not carried into the cost, environmental, and energy impact analyses phase of the BACT evaluation as it was considered not technically feasible.

4.2.3 Absorption System (Mineral Absorption System)

In general, absorption is a mass transfer operation in which one or more soluble components of a gas mixture are dissolved in a liquid that has low volatility under the process conditions. The pollutant diffuses from the gas into the liquid when the liquid contains less than the equilibrium concentration of the gaseous component. The difference between the actual concentration and the equilibrium concentration provides the driving force for absorption.

A properly designed gas absorber will provide thorough contact between the gas and the solvent in order to facilitate diffusion of the pollutant. The rate of mass transfer between the two phases is largely dependent on the surface area exposed and the time of contact. Other factors governing the absorption rate, such as the solubility

of the gas in the particular solvent and the degree of the chemical reaction, are characteristic of the constituents involved and are relatively independent of the equipment used.

The suitability of gas absorption as a pollution control method is generally dependent on the following factors: 1) availability of suitable solvent; 2) required removal efficiency; 3) pollutant concentration in the inlet vapor; 4) capacity required for handling waste gas; and, 5) recovery value of the pollutant(s) or the disposal cost of the unrecoverable solvent.

Specifically, Mineral Oil Absorption System or solvent air separation system is widely used in the Soybean Extraction process throughout the world. Cold mineral oil is used to absorb solvent from vent gases before discharging clean gases to the atmosphere. Non-condensable gases enter the mineral oil absorber at the bottom and rise through the tower packing. The non-condensable gases are flowing counter-currently to the cold mineral oil at the top. The solvent is subsequently absorbed by the mineral oil, and desolventized gases are drawn off through a demister at the top.

The solvent-laden mineral oil collected at the bottom of the absorption column is pumped through a heat exchanger, and finally to the top of the mineral oil stripper. Here the solvent is removed from the mineral oil by live steam evaporation as the mineral oil trickles down through the tower packing. The solvent vapors drawn off at the top of the stripping column travel back to the vent condenser. Solvent-free mineral oil collected at the bottom of the mineral oil stripper is recycled through the mineral oil interchanger/cooler, then back to the absorption column where the cycle is repeated.

Absorption is used successfully and economically on the extraction main vent. Therefore, this technology is deemed technically feasible and carried forward.

4.2.4 Condensation

Refrigerated condensers are used for treating emission streams with high VOC concentrations (usually > 5,000 ppmv) in applications involving gasoline bulk terminals, storage, etc. (EPA, 2002). The emission stream enters a heat exchanger and encounters the cold surface of the tube carrying the refrigerant. The emission stream temperature drops to the dew point of its VOC constituent. The VOC liquefies and drops out of the emission stream. The VOC free emission stream is then vented to the stack while the condensed solvent is collected for reuse or disposal.

Since condensation systems are recommended for emission streams containing greater than 5,000 ppm and the subject emissions stream will nearly always be below 5,000 ppm, this technology was not carried into the cost, environmental, and energy impact analyses phase of the BACT evaluation as it was considered not technically feasible.

4.3 Discussion on Technical Feasibility/Infeasibility – Meal Processing

VOC emissions from meal processing are generally low in concentration and have high flow rates. Because of these characteristics, meal processing emissions have historically been controlled by pollution prevention methods due to the unreasonable costs of trying to implement add-on controls. The following VOC control technology is considered available at this time for meal processing.

4.3.1 Thermal or Catalytic Oxidation

This technology was discussed in the previous section.

4.3.2 Carbon Adsorption

This technology was discussed in the previous section.

4.3.3 Optimization of Desolventizer Toaster/Dryer/Cooler

A faulty or poorly designed or operated DTDC may result in inadequate desolventization of the meal. This results in higher VOC emissions from all downstream meal processing, including the subsequent dryer and cooler vents and meal grinding and meal loadout. Emission reductions at all meal processing vents may be accomplished by improving the desolventizing equipment to achieve better operation. Replacement – which this project proposes – of the desolventizing equipment has the following advantages: reduced VOC loss, increased meal quality, enhanced loss prevention, and possible reduced steam consumption.

4.4 BACT Analysis for New Boiler

The following sections present a detailed discussion of the BACT information and controls for the new main boiler.

4.4.1 BACT Clearinghouse Analysis - New Main Boiler

This step is undertaken by first reviewing the RACT/BACT/LAER Clearing house (RBLC) database on VOC control technologies for natural gas fired boilers. This database contains BACT determinations made and approved by different State Agencies for similar sources and processes.

Based on a database query of permits issued up to August 2018, the following BACT determinations related to boilers were identified and presented in Table 4.4 below.

Facility	Date	RBLC ID #	Emission Unit	VOC BACT Requirements
Duke Energy	07/25/2018	IN-0287	Auxiliary Boiler	Control Method: Good
Indiana, LLC				combustion practices
Midwest	8/22/17	IN-0263	1. Startup	Control Method: Good
Fertilizer			Heater	combustion practices
Company				Emission Limit: 0.3780 lb/hr, 3
				hr average;
				200 hr/year
			2. Natural	Control Method: Good
			Gas	combustion practices
			Auxiliary	Emission Limit: 1. 5.5 lb/mmcf
			Boilers	- 3 hr avg; 2. 1877.39
				mmcf/12-month rolling total 3.
				Only combust natural gas.
Indeck Niles,	3/8/18	MI-0423	Auxiliary Boiler	Control Method: Good
LLC				combustion practices
				Emission Limit: 0.004 lb/mmbtu
REXTAC, LLC	11/16/17	TX-0813	2 - 223 mm Btu/hr	Control Method: Good
			boilers	combustion practices
				Emission Limit: 0.0005
				lb/mmbtu
Indorama	4/28/17	LA-0314	2 - 248 mm Btu/hr	Control Method: Good
Ventures			boilers	combustion practices and
Olefins, LLC				proper maintenance
				Emission Limit: 0.0054
				lb/mmbtu
Ag Processing	8/18/15	NE-0059	200 mm Btu/hr	No controls. 0.0054 lb/mmbtu
Inc.			boilers	
Moundsville	5/1/18	WV-0025	100 mmBtu/hr	Control Method: Good
Power			boiler	combustion practices and use
				of natural gas
				Emission Limit: 0.6 lb/hr;
				0.006 lb/mmbtu

Table 4-4 Summary of RBLC Database Review – Boilers

4.4.2 VOC Control Technology Options Analysis

VOC generation in regards to industrial boilers results from combustion of fuels or leaks in oil or gas piping.

Good Combustion Practices: Good combustion practices include operating the system based on the design and recommendations provided by the manufacturer and by maintaining proper air-to-fuel ratios with periodic maintenance checks. A well operated system utilizing good combustion practices is the most prevalent and cost effective measure for reducing VOC emissions from the proposed boiler.

Proposed VOC BACT

Proposed good combustion practices to be implemented by Bunge will maintain VOC emissions below the emission limit. Good combustion practices will be considered BACT for VOCs for the new main boiler.

5.0 RANK REMAINING CONTROL TECHNIQUES BY EFFECTIVENESS

This section evaluates the relative effectiveness of the various options considered technically feasible and carried forward. The most effective treatment option would be mineral oil absorber for the extraction main vents. Table 6.1 presents the effectiveness of the control technologies that are technically feasible:

Table 5.1: Effectiveness of the control technologies that are technical feasible for Soybean Extraction Process - Main Vent

Control Technologies	Effectiveness or
Reviewed	Removal Efficiency
Mineral Oil Absorber	95%

The control technology that was identified as technically feasible for Soybean Extraction Process – Meal Processing was:

• Optimization of Desolventizer Toaaster/Dryer/Cooler.

The control technology that was identified as technically feasible for the new main boiler was:

• Good Combusion Practices.

6.0 EVALUATION OF MOST EFFECTIVE CONTROL TECHNIQUE(S)

Since the other control systems are deemed technically infeasible and the selected control device, DTDC optimization, and good combustion practices are deemed "achieved in practice", and are the most effective emission control technologies, cost effective justification is not required. No additional evaluation of technological options.

The control technologies listed in Table 6-1 below represent VOC BACT for the proposed plant expansion.

Source	Control Technology
Main Vent	Mineral Oil Absorber
Meal Processing	Optimization of DT/DC
New Boiler	Good Combustion Practices

Table 6-1 Proposed BACT for Plant Expansion at Bunge

7.0 CONCLUSIONS

This BACT Analysis is developed in support of a PSD permit application for emissions of VOC from Bunge's Decatur, Alabama Soybean Extraction Plant. The sources of VOC emissions addressed in this BACT Analysis are the extraction main process vent, fugitive emissions, post-desolventizer vents (DT/DC vents) and the new main boiler.

An evaluation of the BACT for soybean extraction plants has shown that mineral-oil absorption continues to be most viable, safe, and efficient means of solvent recovery for soybean extraction plants.

Safety-analysis and technical analysis have conclusively shown that incineration and carbon adsorption are not feasible controls for hexane extraction plants. In fact, the National Fire protection Association Standards precludes the use of incineration systems, and previous industry experience with carbon adsorbers has shown that carbon adsorption is unsafe and unreliable in soybean extraction hexane recovery application. Therefore, carbon adsorption and incineration are not currently considered viable, safe, and effective economic control options. On the basis of the above, Mineral Oil Absorption should be considered BACT for the extraction main vent. Additionally, the control efficiency of the mineral oil absorber is above 95% VOC recovery efficiency which is the highest efficiency of all the available control technologies. Bunge is also recommending that since it is difficult to quantify hexane emission loss to the atmosphere, BACT should be defined for soybean extraction plants on the basis of total measured hexane inventory loss. This is consistent with other BACT determinations for soybean plants and the Vegetable Oil NESHAP (40 CFR Part 63, Subpart GGGG) and the consent decree. Bunge proposes a solvent loss limit of 0.19 gallons of hexane lost per ton of soybeans processed on a 12-month rolling total basis, including startups, shutdowns, and malfunctions and equipment leaks. Based on 61,425,000 bushels per year, this limit would result in an annual solvent loss of 986 tons per year.

Add-on controls on post desolventizing vents (dryer, cooler vents) are unapplied to this source due to safety concerns. In fact, the National Soybean Products Association has raised doubts regarding the safety of add-on controls on these vents. Another source of VOC emissions in soybean oil plants is fugitive emissions. Since these losses result mainly from leaks and spill, control is best affected by an adequate maintenance and housekeeping program. Effectiveness will be demonstrated by complying with the overall solvent loss ratio of 0.19 gallons per ton.

Good combustion practices will be considered BACT for VOCs for the new main boiler.

8.0 REFERENCES

- ATSDR. (2008). Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Phenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- EPA. (2002). EPA Air Pollution Control Cost Manual. EPA/452/B-02-001. Sixth Edition. Research Triangle Park, NC 27711: USEPA Office of Air Quality Planning and Standards.
- NJR. (2009). Control and Prohibition of Air Pollution by Volatile Organic Compounds and Oxides of Nitrogen. Air Pollution Control. New Jersey Department of Environmental Protection, Division of Air Quality. Retrieved May 27, 2014, from http://www.lexisnexis.com/njoal/
- Norit. (2007). Activated Carbon-Information Sheet. Adsorptive Capacity for Vapor Contaminants. Retrieved April 4, 2014, from http://www.norit.com/files/documents/Adsorp_Capacity_of_Vapor_Contam_rev2.pdf
- USEPA. (1990). New Source Review Workshop Manual. USEPA.
- EPA. (1978). Control of Volatile Organic Emissions from Manufacture of Vegetable Oils. EPA/450/2-78-035. OAQPS No. 1.2-110. Research Triangle Park, NC 27711: USEPA Office of Air Quality Planning and Standards.
- AP42, Fifth Edition, Compiliation of Air Pollutant Emissions Factors, Volume 1 Stationary Point and Area Sources

APPLICATION FORMS

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT (AIR DIVISION)

.

				This Space
	Facility	Number	-	
	TION/OPERATING F		ATION	
1. Name of Facility, Firm, or Bunge Nort Institution:	th America, Inc			
	cility Physical Local	tion Address		
1400 Market St NE Street & Number:				
Decatur	Morgan		35601	
City: C	ounty:		Zip:	
Facility Mi	ailing Address (If di	fferent from abo	ove)	· · · · · · · · · · · · · · · · · · ·
Address or PO Box:		==	w	
City: Si	tate:		Zip:	
Ow	/ner's Business Mai	ling Address		
2. Owner:				
1391 Timberlake Manor Park Street & Number:	way	City	St Louis	
State: MO Zip: 63017	Telept			
Responsit	ble Official's Busine	ss Mailing Addr	ess	
3. Responsible Official:			Plant Manager Title:	
Street & Number: 1400 Market St NE	<u></u>			·····
City: S	itate:		Zip: 35601	
256-301-4021			ael.klauke@bunge.com	ı
Telephone Number:		ail Address:		
	Plant Contact Info	rmation	<u></u>	an a
Jason W. Davis		Title: ^S	afety & Environmental	Manager
256-301-4038		•	w.davis@bunge.com	
Telephone Number:	E-ma	ail Address:		
5. Location Coordinates:				
UTM	E-W	3829217		N-S
Latitude/Longitude	N LAT	86° 57' 59.9" W		LONG
ADEM Form 103 01/10 m5			Page 1 of	6

6.	Permit	application	is made for:
----	--------	-------------	--------------

•	•			
Existing	source	(initial	application)	

L	Change of location Other (specify)			
	Existing source (permit renewal)			
	f application is being made to construct or modify, please provide the name and address of installer or			
	c ontractor Not vet selected			
-				
-	Telephone			
-	Date construction/modification to begin to be completed			
	Permit application is being made to obtain the following type permit:			
F				
Ē	Major source operating permit			
ſ	Synthetic minor source operating permit			
ſ	General permit			
Indicate the number of each of the following forms attached and made a part of this application: (i form does not apply to your operation indicate "N/A" in the space opposite the form). Multiple for may be used as required.				
	ADEM 104 - INDIRECT HEATING EQUIPMENT			
	ADEM 105 - MANUFACTURING OR PROCESSING OPERATION			
	ADEM 106 - REFUSE HANDLING, DISPOSAL, AND INCINERATION			
	ADEM 107 - STATIONARY INTERNAL COMBUSTION ENGINES			
	ADEM 108 - LOADING, STORAGE & DISPENSING LIQUID & GASEOUS ORGANIC COMPOUND			
	ADEM 109 - VOLATILE ORGANIC COMPOUND SURFACE COATING EMISSION SOURCES			
	ADEM 110 - AIR POLLUTION CONTROL DEVICE			
	ADEM 112 - SOLVENT METAL CLEANING			
	ADEM 438 - CONTINUOUS EMISSION MONITORS			
	ADEM 437 - COMPLIANCE SCHEDULE			
	General nature of business: (describe and list appropriate standard industrial classification (SIC) and North American Industry Classification System (NAICS) (<u>www.naics.com</u>) code(s)):			
Ş	Soybean processing and soybean oil refining SIC 2075, NAICS 311224			
	Edible oils blending and packaging SIC 2079, NAICS 311225			

ADEM Form 103 01/10 m5

10. For those making application for a synthetic minor or major source operating permit, please summarize each pollutant emitted and the emission rate for the pollutant. Indicate those pollutants for which the facility is major.

Regulated pollutant	Potential Emissions* (tons/year)	Major source? yes/no
		<u></u>
		····

*Potential emissions are either the maximum allowed by the regulations or by permit, or, if there is no regulatory limit, it is the emissions that occur from continuous operation at maximum capacity.

11. For those applying for a major source operating permit, indicate the compliance status by program for each emission unit or source and the method used to determine compliance. Also cite the specific applicable requirement.

Emission unit or source:

(description)

D-11-1-14	Ohan dan d	0		Compliance Status	
Pollutant	Standard	Program	Method used to determine compliance	IN ²	OUT ³
					<u> </u>
	<u></u>	······································			
	<u>, , , , , , , , , , , , , , , , , , , </u>				
	Pollutant ⁴	Pollutant ⁴ Standard	Pollutant ⁴ Standard Program ¹	Pollutant ⁴ Standard Program ¹ Method used to determine compliance	Pollutant' I Standard I Program' I Mathad used to datarming compliance

¹PSD, non-attainment NSR, NSPS, NESHAP (40 CFR Part 61), NESHAP (40 CFR Part 63), accidental release (112(r)), SIP regulation, Title IV, Enhanced Monitoring, Title VI, Other (specify)

²Attach compliance plan

³Attach compliance schedule (ADEM Form-437)

⁴Fugitive emissions must be included as separate entries

12. List all insignificant activities and the basis for listing them as such (i.e., less than the insignificant activity thresholds or on the list of insignificant activities). Attach any documentation needed, such as calculations. No unit subject to an NSPS, NESHAP or MACT standard can be listed as insignificant.

	1
Insignificant Activity	Basis
	· · · · · · · · · · · · · · · · · · ·
	······································
······································	
<u></u>	

13. List and explain any exemptions from applicable requirements the facility is claiming:

<u>a.</u>			
b.			
с.			
d.			
е.			
f.		 <u></u>	
g.			<u> </u>
h.			
í.			

14. List below other attachments that are a part of this application(all supporting engineering calculations must be appended):

a. Project Description	
b. Emission Calculations	
c. Specifications Documents	
d. Process Flow Diagrams	
e. BACT Analysis	
f. Air Quality Data	
g. Stack Test Report	
<u>h.</u>	
i.	

I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLE INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE.

I ALSO CERTIFY THAT THE SOURCE WILL CONTINUE TO COMPLY WITH APPLICABLE REQUIREMENTS FOR WHICH IT IS IN COMPLIANCE, AND THAT THE SOURCE WILL, IN A TIMELY MANNER, MEET ALL APPLICABLE REQUIREMENTS THAT WILL BECOME EFFECTIVE DURING THE PERMIT TERM AND SUBMIT A DETAILED SCHEDULE, IF NEEDED FOR MEETING THE REQUIREMENTS.

Plant Manager

2/22 12019

SIGNATURE OF RESPONSIBLE OFFICIAL

TITLE

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

٢	 I		<u> </u>							
I		_				_				
L		-				-				
				Do	not i	write	in t	hin r	noo	~

Do not write in this space

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operating scenario number <u>1</u>			
	RS-1a Rail Unloading Pits - Fugitive	Emissions		
	RS-1b Truck Unloading Pits – with Ba	ghouse		
	RS-3b – Barge Unloading – see separ	ate form		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	Soybeans are unloaded from rail, trucl	k or barge and transferred to st	orage. The total annual input	
	quantity is for all 3 sources, but each	source can unload at 375 tons/	hr.	
3.	Type of unit or process (e.g., calcining	g kiln, cupola furnace):		
	Make: NA	Model:	NA	
	Rated process capacity (manufacture	r's or designer's guaranteed r	naximum) in pounds/hour:	750,000 each
	Manufactured date: 1972-74		Proposed installation date:	NA
		(Original installation date (if existing):	1972-74
		Reconstruction	or Modification date (if applicable):	NA
1.	Normal operating schedule:			
	Hours per day: 24	Days per week: 7	Weeks per year: 52	
	Peak production season (if any):	None		

4

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year	
Soybeans	375 ton/hr	750,000	1,842,750	
му домонности области продокти по по се	19 - Anno 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199			
	an ang ang ang ang ang ang ang ang ang a			
	100 10			
	·			

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				· · · · · · · · · · · · · · · · · · ·
Fuel Oil	-	Btu/gal				
Natural Gas		Btu/ft ³	 			
L. P. Gas	-	Btu/ft ³				
Wood		Btu/lb				
Other (specify)						

7. Products of process or unit:

Products	Quantity/year	Units of production	
None			
1			

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

The rail unloading station is located inside a shed enclosure reducing fugitive emissions by 40%.

None of the three unloading stations are able to continuously unload due to the need to reposition the railcar,

truck or barge. These sources are also limited by bottlenecks downstream of this process.

A plant wide throughput limit of 61,425,000 bushels per year is proposed.

9. Is there any emission control equipment on this emission source? ⊠Yes □No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

	Stack					
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter _(Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
RS-1a	Fugitive Source					
RS-1b	10	577	2.5	73.7	27,713	Ambient
[
ll					·····	
					2 <u></u>	

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

<u></u>		Potential Emissions			Regulatory En	nission Limit
Emission				Basis of		(units of
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
	See Attached				PWR	
RS-1a	Emission Calculations				E=17.31P ^{0.16}	
	See Attached				PWR	
RS-1b	Emission Calculations				E=17.31P ^{0.16}	
					ļ	
					<u> </u>	
l			<u> </u>		<u></u>	
l			<u> </u>			
L			<u> </u>			

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram 13. Is this unit or process in compliance with all applicable air pollution rules and regulations?

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

∐yes ⊠no

List storage piles or other facility (if any):

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew				
Signature:	Date:	February 21, 2019			

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

-				-				
		Do	not v	write	in t	his s	spac	e

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

RS-2 He	eadhouse t	to Storage Tan	k Conveyor, Scales, El	evator Boot	Section – with Baghouse	
Soybear	ns received	d by rail, truck o	or barge are conveyed,	elevated, w	eighed, sampled and transferred to sto	orage.

Type of u	unit or prod	cess (e.g., calo	cining kiln, cupola furn	ace):		
Type of u	unit or prod	cess (e.g., calo	cining kiln, cupola furn	ace):		
		cess (e.g., calo	cining kiln, cupola furn			
	unit or proo		cining kiln, cupola furn		NA	
Make:	NA		- · ·	Model:	NA maximum) in pounds/hour:	
Make: Rated pro	NA	pacity (manufac	cturer's or designer's g	Model:		22500
Make: Rated pro	NA rocess cap	pacity (manufac	cturer's or designer's g	Model: guaranteed	maximum) in pounds/hour:	22500 : NA
Make: Rated pro	NA rocess cap	pacity (manufac	cturer's or designer's g	Model: guaranteed	maximum) in pounds/hour: Proposed installation date	22500 : NA : 1972-
Make: Rated pro Manufac	NA rocess cap	pacity (manufac :: 1972-74	cturer's or designer's g	Model: guaranteed	maximum) in pounds/hour: Proposed installation date Original installation date (if existing)	22500 : NA : 1972-
Make: Rated pro Manufac	NA rocess cap tured date	pacity (manufac :: 1972-74	cturer's or designer's g	Model: guaranteed	maximum) in pounds/hour: Proposed installation date Original installation date (if existing) n or Modification date (if applicable)	22500 : NA : 1972-
Make: Rated pro Manufact Normal o Hours pe	NA focess cap tured date	acity (manufac : <u>1972-74</u> :: <u>1972-74</u>	cturer's or designer's g Re	Model: guaranteed constructior	maximum) in pounds/hour: Proposed installation date Original installation date (if existing) n or Modification date (if applicable)	22500 : NA : 1972-

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybeans received	300 ton/hr	2,250,000	1,842,750

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production	
None			
naannaan muunnaan maannaan maannaan maannaan maannaan maanaa maanaa maa ka saa saa saa saa saa saa sa			

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

This process can not handle grain faster than the combined receipt of grain by rail, truck or barge (375 ton/hr each).

The source is also limited by bottlenecks downstream of this process.

A plant wide throughput limit of 61,425,000 bushels per year is proposed.

9. Is there any emission control equipment on this emission source? ⊠Yes □No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

	Stack					
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (ºF)
RS-2	130	577	18" x 23"	72	12,419	Ambient
· · · · · · · · · · · · · · · · · · ·						
····						
			- 3-18 ⁻¹⁻ -			
	l					

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential Emissions			Regulatory Emission Limit	
Emission				Basis of		(units of
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
	See Attached				PWR	
RS-2	Emission Calculations				E=17.31P ^{0.16}	-
						· · · · · · · · · · · · · · · · · · ·
	_					
				· · · · · · · · · · · · · · · · · · ·		

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) X Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

_yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew		
Signature:	Date:	February 21, 2019	

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

			<u>╷</u> ╷╺ <u>└──┴──</u> ┘╺└ <u>─└</u> ╶ <u>╷</u>	
1.	Name of firm or organization:	Bunge North America, Inc	Do not write in this space	
2.	for each type of process or for material from, or provides inp	or multiple units of one ut material to, another	in your facility: (separate forms are to be process type. If the unit or process rece operation, please indicate the relationshi d for each alternative operating scenario.	eives input p between
	Operating scenario number _			
	Barge Unloading System - RS-3b	1		
	Soybean unloading			
	This dock system includes enclosed con	nveyors, excavator, unloading	nopper, and dust collector.	
		and a summer of all and a summer of a summer of the summer of the summer of the sum of the sum of the sum of the		
				1. (and a state of the state of
3.	Type of unit or process (e.g., o	calcining kiln, cupola f	urnace): Barge unloading system	
3.	Type of unit or process (e.g., o Make:	calcining kiln, cupola f	urnace): Barge unloading system Model: To be determined	
3.	Make: Kice or Mac		To be determined	750,000
3.	Make: Kice or Mac		Model: To be determined	
3.	Make: Kice or Mac Rated process capacity (man		Model: ^{To be determined} 's guaranteed maximum) in pounds/hour: Proposed installation date:	12/2018
3.	Make: Kice or Mac Rated process capacity (man	ufacturer's or designe	Model: ^{To be determined} 's guaranteed maximum) in pounds/hour:	12/2018 NA
	Make: Kice or Mac Rated process capacity (man	ufacturer's or designe	Model: ^{To be determined} 's guaranteed maximum) in pounds/hour: Proposed installation date: Original installation date (if existing):	12/2018 NA
	Make: ^{Kice or Mac} Rated process capacity (man Manufactured date: ^{NA}	ufacturer's or designer Reconstru Days per ⁷	Model: ^{To be determined} 's guaranteed maximum) in pounds/hour: Proposed installation date: Original installation date (if existing):	12/2018 NA

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process Rate Average (lb/hr)	Maximum (lb/hr)	Quantity tons/year
Soybeans	370,000	750,000	1,842,750
	1 - 17 maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	·	

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u>MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal		Btu/lb				
Fuel Oil		Btu/gal				·
Natural Gas		Btu/ft ³				
L. P. Gas		Btu/ft ³				
Wood		Btu/lb				
Other (specify)						

7. Products of process or unit:

Products	Quantity/year	Units of production
Soybeans	1,842,750	tons
and the second secon		

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

A plant wide throughput limit of 61,425,000 bushels per year is proposed.

9. Is there any emission control equipment on this emission source?

Yes No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (Each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

<u> </u>				Stack		
Emission Point	Height Above Grade (Feet)	Base Elevation (Feet)	Diameter (Feet)	Gas Exit Velocity (Feet/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
RS-3b					15,000	Ambient
	+				· · · · · · · · · · · · · · · · · · ·	
······	++					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	<u> </u>					
	++					
	<u> </u>	···	· · · · · · · · · · · · · · · · · · ·			
	++	. .				
					<u></u>	
	ļ					
	 					
	<u> </u>					
	<u>† </u>					
+ 01 4 4			L			

* Std temperature is 68°F - Std pressure is 29.92" in Hg.

11. Air contaminants emitted: Basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

Emission		Potential Emissions		ssions	Regulatory E	mission Limit
Point	Pollutants	(lb/hr)	(Tons/yr)	Basis of Calculation	(lb/hr)	(units of standard)
RS-3b	See Attached Emission Calculations					
				■487/80087 .90		
						1

12. Using a flow diagram:

- Illustrate input of raw materials, (1)
- Label production processes, process fuel combustion, process equipment and air (2) pollution control equipment,
- Illustrate locations of air contaminant release so that emission points under item 10 can be (3) identified.

(Check box if extra pages are attached) **Process flow diagram**

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

Yes No

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)
			ann a Mhailt a le an a dha dhadh a dha adh a dhan an ann an Ann an Ann an Ann an Ann a dhaan a dhaanna dha na A

Name of person preparing application:	Christa Andrew	
Signature:	Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

	WANDFACTORING ON FROCESSING OF ERRITON					
	Do not write in this space					
4	Nome of firm or experization. Dunce North America, Inc.					
1.	Name of firm or organization: Bunge North America, Inc.					
2.	. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) A application should be completed for each alternative operating scenario.					
	Operating scenario number <u>1</u>					
	RS-5a-g Soybean Storage Tanks (atmospheric vents)					
	Beans arriving at the plant are ultimately sent to one of these seven one million bushel storage tanks.					
3.	Type of unit or process (e.g., calcining kiln, cupola furnace): Grain Storage Tanks					
	Make: NA Model: NA 375					
	Rated process capacity (manufacturer's or designer's guaranteed maximum) in pounds/hour: ton/hr					
	Manufactured date: 1972-74 Proposed installation date: NA					
	Original installation date (if existing): 1972-74					
	Reconstruction or Modification date (if applicable): NA					
4.	Normal operating schedule:					
•••						
	Hours per day: _24 Days per week: _7 Weeks per year: _52					
	Peak production season (if any): None					

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybeans	375 ton/hr	750,000	1,842,750
			1
	a na transmittang apataga ^{apa} ka kana ana kananana tananana a kata a gi kanana	······	
	8 95 3 962000 9999966 at castal alles stationed and statione		

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas		Btu/ft ³				
Wood		Btu/lb				
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production	
None			
Черение и полнование			

8 For each regulated pollutant descr	ribe any limitations on source operation wh	nich affects emissions or any work	

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

Grain throughput is limited by downstream processes in the plant.

A plant wide throughput limit of 61,425,000 bushels per year is proposed.

9. Is there any emission control equipment on this emission source? ☐Yes ⊠No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

		Stack				- ·.
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (ºF)
RS-5a-g – square vents	97	577	4.67 x 4.67	Unknown	Unknown	Ambient
Round vents	91	577	2.5	Unknown	Unknown	Ambient
					11 Mart 19 19 19 19 19 19 19 19 19 19 19 19 19	
<u>~</u>					·····	
L						I

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	Regulatory Emission Limit			
Emission				Basis of		(units of
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
	See Attached				PWR	
RS-5a-g	Emission Calculations				E=17.31P ^{0.16}	-
					ļ	
· · · · · ·						
					1	
					· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				
1						

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

∐yes ⊠no

(diameter or screen size)	Pile size or facility (average tons)	fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew	
Signature:	Date:	February 21, 2019

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

han hard have have been have a second s	Do pot write	in this space
	<u> </u>	

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operatin	g scena	rio num	ber <u>1</u>				
	CD-1 -	Bean Cle	eaning	Process				
	After be	ans are i	receive	d, they are so	calped, screened a	nd cleaned pr	ior to being processed. CD-1 is the bag	house
	through	which th	is equij	oment is aspi	rated. The plant is	installing new	v screens, bucket elevator, and new cor	veyors in
	2018/19). The ba	aghous	e currently us	sed for the headhou	se will be use	ed for bean cleaning and the baghouse	currently
	used for	r bean cle	eaning	will be used f	or the headhouse.			
3.	Type of u	unit or pr	rocess	(e.g., calcinin	ng kiln, cupola furr	nace):	Grain Screening and Cleaning	
	Make:	NA				Model:	NA	
	Rated pr	ocess ca	apacity	(manufactu	rer's or designer's	guaranteed r	maximum) in pounds/hour:	450 ton/hr
	Manufac	tured da	ite:	May 2018			Proposed installation date:	May 2018
						(Original installation date (if existing):	
					Re	econstruction	or Modification date (if applicable):	May 2018
4.	Normal o	operating	g sched	ule:				
	Hours pe	er day:	24		Days per week:	7	Weeks per year: 52	
	Peak pro	oduction	seaso	n (if any):	None			

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (Ib/hr)	Quantity tons/year
Soybeans	218.8 ton/hr	900,000	1,842,750
	,		
	1 79, 11 19		
Manifestiman and Manifestiman and Manifestima de advance, a more afrest Manifestima de la constant			

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal		Btu/lb				· · · · · · · · · · · · · · · · · · ·
Fuel Oil	-	Btu/gal				
Natural Gas		Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				· · · · · · · · · · · · · · · · · · ·
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production	
None			
anna a sua su		alaasiinna 9aaaaaaa ka maaaaaa ka maaaaaaaaaaaaaa	

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

Grain throughput will be limited by the plant wide throughput of 61,425,000 bushel per year.

9. Is there any emission control equipment on this emission source? ⊠Yes □No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

		Stack			······································	
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
CD-1	10	577	1.67 x 1.67	151.9	25310	Ambient
Existing						
·						
•					<u></u>	

* std temperature is 68°F - std pressure is 29.92" in hg.

.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	Emissions	<u> </u>	Regulatory En	nission Limit
Emission				Basis of		(units of
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
	See Attached				PRW	
CD-1	Emission Calculations				E=17.31P ^{0.16}	-
J						

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

□yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew	
Signature:	Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

	Do not write in this space]								
1.	Name of firm or organization: Bunge North America, Inc.									
2.	. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.									
	Operating scenario number 1									
	CD-2 Law Marot Grain Dryer									
	45.2 mmBtu/hr counter current flow grain dryer									
	10,000 bushel/hr									
	Even though this is above the total throughput of the plant, operations are limited by bottlenecks downstre	am								
	of the dryer.									
3.	Type of unit or process (e.g., calcining kiln, cupola furnace): Grain Dryer									
	Make: Law Marot Model: SC3-10.4-20 PL2B									
	Rated process capacity (manufacturer's or designer's guaranteed maximum) in pounds/hour:	900000								
	Manufactured date: 2015 Proposed installation date:									
	Original installation date (if existing):	September 2015								
	Reconstruction or Modification date (if applicable):									
4.	Normal operating schedule:									
	Hours per day: 24 Days per week: 7 Weeks per year: 52	******								
	Peak production season (if any): None									

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year 1,842,750	
Soybeans	250 ton/hr	500,000		
			Figure particular and the second states of the	
			•	
	to a fit when the construction could be construction and the second structure of t			
			•	
			·····	

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): ____ MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	1000	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production		
None				

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

Throughput is limited by processes downstream of the dryer.

A plant wide throughput limit of 61,425,000 bushel per year is proposed.

9. Is there any emission control equipment on this emission source? Yes No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

Emission Point	Height Above Grade (Ft)	Stack Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
CD-2	95.3	577	Four 3'x5' vents	75	270000	110
					41.000	
			· · · · · · · · · · · · · · · · · · ·			
						

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

	مد عليه 10 ت 12 پر پر پر پر <u>پر پر پ</u>	Potential I	<u>مېر د د د د د د د د د د د د د د د د د د د</u>	Regulatory Emission Limit		
Emission Point	Pollutants	(lb/hr)	(Tons/yr)	Basis of Calculation	(lb/hr)	(units of standard)
CD-2	See Attached Emission Calculations				PWR E=17.31 P ^{0.16}	
						****=
		· · · · · · · · · · · · · · · · · · ·		1 		
						······

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

∐yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of pers	son preparing application:	Christa Andrew					
Signature:			Date:	2/21/19			

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

		-			_			
		-			_			
	 		 	_	 			
				D • •	 ·	· · · · ·	<u> </u>	 -

Do not write in this space

- 1. Name of firm or organization: Bunge North America, Inc.
- Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operating scenario	o number	_1_					
	CD-6 Law Marot	Grain Drye	ər					
	29.2 mmBtu/hr co	unter curr	ent flow a	rain drver				
	10,000 bushel/hr							
	Even though the th	hroughput	from the	two dryers is abov	ve the total t	hroughput of the plant, operat	ions are	limited by
	bottlenecks downs	stream of 1	he dryers	5				
		410000000000000000000000000000000000000						
3.	Type of unit or pro	cess (e.g	., calcinir	ıg kiln, cupola fur	nace):	Grain Dryer		
					,			
	Make: Law Ma	arot			Model:	To be determined		
	Rated process cap	bacity (ma	anufactur	er's or designer's	guaranteed	l maximum) in pounds/hour:		250000
	Manufactured date	e: 201	9			Proposed installation	on date:	Sept. 2019
				******************	C	Driginal installation data (if a	victina):	2013
						Driginal installation date (if e		
				Rec	onstruction	or Modification date (if appl	licable):	
4.	Normal operating s	schedule:						
	Hours per day:	24		Days per week:	7	Weeks per year:	52	
	Peak production se	eason (if :	any):	None				

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybeans	125 ton/hr	250,000	1,842,750
			
		-1,510-0,710-7,510-9,10-9,10-9,10-9,10-9,10-9,10-9,10-9,	
			1
	11 Loberto II alla COMPLE ANTARA		
			R

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): ____ MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal		Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	1000	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-]			

7. Products of process or unit:

Products	Quantity/year	Units of production
None		
		-
		· /

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

Throughput is limited by processes downstream of the dryers.

A plant wide throughput limit of 61,425,000 bushel per year is proposed.

9. Is there any emission control equipment on this emission source? ⊠Yes □No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

		Stack				E-vit
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
CD-6	95.3	577	Two 3'x5' vents		135000	110
			, <u></u>			
					<u></u>	
			86-94			
n. 						

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential I	Emissions		Regulatory Err	nission Limit
Emission Point	Pollutants	(lb/hr)	(Tons/yr)	Basis of Calculation	(lb/hr)	(units of standard)
CD-6	See Attached Emission Calculations		(******		PWR E=17.31 P ^{0.16}	
		}				

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

∐yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)
19			

Name of person preparing application:	Christa Andrew	
Signature:	Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

-				-				
		Do	not v	write	in t	his s	spac	e

1. Name of firm or organization: Bunge North America, Inc.

Operating scenario number _1__

 Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

		ean Cono e soybea			dehulled, they pass	s through the	conditioner. This process heats the	
				nake them pli eaking into si		hydrated in c	order to permit the flaking of the beans	
3.	Type of u	unit or pi	rocess	s (e.g., calcin	ing kiln, cupola fur	nace):	Vertical bean conditioner	
-	Make:	To be	e detei	mined		Model:	To be determined	
	Rated pr	rocess c	apacit	y (manufactı	rer's or designer's	guaranteed	maximum) in pounds/hour:	437,500
	Manufac	tured da	ate:	2019			Proposed installation date:	2019
							Original installation date (if existing):	
					R	econstructior	n or Modification date (if applicable):	NA
4.	Normal o	operating	g sche	dule:				
	Hours pe	er day:	24		Days per week:	7	Weeks per year: 52	
	Peak pro	oduction	seaso	on (if any):	None			

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybeans	219 ton/hr	438,000	1,719,900
		La Main (1979) 2010 - Canada Managari, Kanada Managari, Kanada Managari, Kanada Managari, Kanada Managari, Kana	9
ana ana amin'ny fahita amin' any fahita ana amin' a			
			-

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)						

7. Products of process or unit:

Products	Quantity/year	Units of production
Soybean Meats	1,719,900	ton/yr
16.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.		·
		A

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

A plant wide throughput limit of 61,425,000 bushels per year is proposed.

9. Is there any emission control equipment on this emission source? ☐Yes ⊠No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

Emission Point	Height Above Grade (Ft)	Stack Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
PR-6	10	577	24" x 24"	62.5	15,000	140
			· · · · · · · · · · · · · · · · · · ·			
	* add 4					

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	Emissions		Regulatory En	nission Limit
Emission Point	Pollutants	(lb/hr)	(Topo/ur)	Basis of Calculation	(lb/br)	(units of
Foint	*		(Tons/yr)	Calculation	(lb/hr)	standard)
1	See Attached					
PR-6	Emission Calculations				E=17.31P ^{0.16}	-
ļ						
]					
		· · · · · · · · · · · · · · · · · · ·				
	1			·····		
L						

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

⊡yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of pers	son preparing application:	Christa D. Andrew		
Signature:			Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

-				-				
		Do	not v	write	in t	his s	spac	е

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

Bean m	eats are flatter	ned into flakes	s to make the extraction of the soybean oil more efficient. This emission	on point
represe	nts the aspirat	ion of these fla	akers.	
Type of u	unit or proces	s (e.g., calcin	ing kiln, cupola furnace): Soybean Flaking Mills	
	unit or process			
Make:	NA		Model: NA	219 ton/i
Make: Rated pr	NA		Model: NA	219 ton/l
Make: Rated pr	NA rocess capacit	ty (manufactu	Model: NA urer's or designer's guaranteed maximum) in pounds/hour: Proposed installation date	219 ton/f
Make: Rated pr	NA rocess capacit	ty (manufactu	Model: NA urer's or designer's guaranteed maximum) in pounds/hour: Proposed installation date Original installation date (if existing	219 ton/l e: NA): 2019
Make: Rated pr Manufac	NA rocess capacit	ty (manufactu _2019	Model: NA urer's or designer's guaranteed maximum) in pounds/hour: Proposed installation date	219 ton/l e: NA): 2019

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year	
Soybean Meats	219 ton/hr	438,000	1,719,900	

			•	
and a second state of the				
			-	

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				an a
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				· · · · · · · · · · · · · · · · · · ·
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb	,			
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production
Soybean Flakes	1,719,900	ton/yr
N		
8. For each regulated pollutant, description practice standard (attach additional pa	be any limitations on source operation wh ge if necessary):	ich affects emissions or any work

Bean meats are approximately 56 lbs/bushel which equates to a maximum throughput of 1,719,900 tons/year.

9. Is there any emission control equipment on this emission source? ⊠Yes □No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

Emission Point	Height Above Grade (Ft)	Stack Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (ºF)
PR-7	10	577	40" x 40"	60	40,000	Ambient
					·	
						
						l

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	missions	Regulatory En	nission Limit	
Emission				Basis of		(units of
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
	See Attached					
PR-7	Emission Calculations	··			E=17.31P ^{0.16}	-
				· · · · · · · · · · · · · · · · · · ·		
		14 m/s to		· · · · · · · · · · · · · · · · · · ·		
				·····		

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

- 15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?
 - □yes ⊠no

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew		
Signature:	Date: February 21, 2019		

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

-			-				
	Do	not ۱	write	in t	his s	pac	е

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

Operating scenario number _1_

EX-1 Soybean Oil Solvent Extraction System with Solvent Recovery System

Soybean flakes are washed with hexane to remove the oil. The flakes are then desolventized to remove the hexane

and then toasted before being sent to the dryer-cooler. The hexane laden with oil is heated and evaporated leaving

crude soybean oil. The hexane vapor is condensed and reused

3.	Type of unit or process (e.g., calcining kiln, cupola furnace): Extractor								
	Make: NA			Model:	NA				
	Rated process capacity (manufacturer's or designer's guaranteed maximum) in pounds/hour:								
	Manufactured date:	2016-17			Proposed installation date:				
					Original installation date (if existing):	May 2018			
			Re	constructio	n or Modification date (if applicable):	NA			
	Normal operating schee	dule:							
	Hours per day: 24		Days per week:	_7	Weeks per year: 52				
	Peak production seaso	n (if anv):	None						

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybean Flakes	204.2 ton/hr	437,500	1,719,900
			1 ,07,041,07,07,07,07,07,07,07,07,07,07,07,07,07,
	r 10. valuetar talante, davitaritaritaritaritaritari davitari (se statuti davitaritaritaritaritaritaritaritari		

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas		Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)						

7. Products of process or unit:

Products	Quantity/year	Units of production
Soybean Flakes	1,719,900	ton/yr

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

It is proposed that the throughput of this facility be limited to 61,425,000 bushels/year.

9. Is there any emission control equipment on this emission source? ☐Yes ⊠No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

		Stack				
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
EX-1	60	577	0.5	30	350	90
					i	
			· ····································			
					<u></u>	

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	missions	20.000	Regulatory En	nission Limit
Emission				Basis of		(units of
Point Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)
EX-1	See Attached Emission Calculations				NA	-
	НАР				Compliance Ratio < 1.0	-

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram 13. Is this unit or process in compliance with all applicable air pollution rules and regulations?

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

□yes ⊠no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

□yes □no

List storage piles or other facility (if any):

Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)
	·	
-	(diameter or screen	(diameter or screen Pile size or facility

Name of pers	on preparing application:	Christa Andrew	
Signature:		Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

	-			-		
		 				_

Do not write in this space

- 1. Name of firm or organization: Bunge North America, Inc.
- Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operating scenario number										
	EX-2 Desolventizer / Toaster (DT) ar	nd Dryer / Cooler (D	C)								
	Soybean meal is desolventized, toast	ted, then dried and	cooled befor	e being sent to the meal processing bui	lding.						
	The existing DT/DC will be replaced with 2 separate units – a DT and a DC.										
	There will be six cyclones associated with this process but they are inherent to the process and not considered										
	control devices.										
3.	Type of unit or process (e.g., calcinir	ng kiln, cupola furna	ace):	DT Unit & DC unit							
	Make: Desmet		Model:	To be determined							
	Rated process capacity (manufactur	er's or designer's g	juaranteed	maximum) in pounds/hour:	328125						
	Manufactured date: 2018-19			Proposed installation date:	2020						
				Original installation date (if existing):							
		Re	constructior	or Modification date (if applicable):							
4.	Normal operating schedule:										
	Hours per day: 24	Days per week:	7	Weeks per year: 52							
	Peak production season (if any):	None									

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybean Meal	164.1 ton/hr	328125	1,382,063
	• • • • • • • • • • • • • • • • • • • •		

			Про урму ууда оодоогоо оо о

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production	

8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):

Throughput is limited by the proposed plant wide throughput of 61,425,000 bushel per year.

9. Is there any emission control equipment on this emission source? ☐Yes ⊠No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

Emission Point	Height Above Grade (Ft)	Stack Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (ºF)
EX-2	44	577	6 @ 30"	59.4	105,000	98-160
ĺ						Discharge temp
						Will vary by cyclone

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	Emissions		Regulatory Emission Limit		
Emission				Basis of		(units of	
Point	Pollutants	(lb/hr)	(Tons/yr)	Calculation	(lb/hr)	standard)	
	See Attached						
	Emission						
EX-2	Calculations					-	

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram 13. Is this unit or process in compliance with all applicable air pollution rules and regulations?

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊡yes ⊠no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

□yes ⊠no

List storage piles or other facility (if any):

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)

Name of person preparing application:	Christa Andrew	
Signature:	Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

-			-				
 	Do	not	write	in t	his s	spac	е

- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operating scenario number <u>1</u>				
	MH-2 c Hull Storage Bin C - with At	mospheric Bin Vents	5		
	MH-2 e,f Hull Pellet Storage Bins E	and F – with Atmosp	heric Bin Ve	ents	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
3.	Type of unit or process (e.g., calcini	ng kiln, cupola furna	ace):	Storage Bins	
	Make: NA		Model:	NA	
	Rated process capacity (manufactu				14.6 ton/hr
	Manufactured date: 1972-74			Proposed installation date:	NA
			1	Original installation date (if existing):	
		Por			1972-74
		Net	construction	n or Modification date (if applicable):	
4.	Normal operating schedule:		constructior	i or Modification date (if applicable):	
4.	Normal operating schedule: Hours per day: 24		construction		

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybean Hulls and Hull Pellets	14.6 ton/hr	29,200	122,850
			An and a state of the state of
			8/ ·····

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

7. Products of process or unit:

Products	Quantity/year	Units of production
None		
8. For each regulated pollutant, descri practice standard (attach additional pa	be any limitations on source operation whi ge if necessary):	ich affects emissions or any work
A plant wide throughput limit of 61,425	,000 bushels per year is proposed.	

9. Is there any emission control equipment on this emission source? ☐Yes ☐No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

		Stack				F
Emission Point	Height Above Grade (Ft)	Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (°F)
MH-2 c	No Stack					
MH-2 e,f	No Stack		·····			
			<u>9749</u> - 41.			
•^						
			······			
				1		<u> </u>

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	Emissions		Regulatory Er	
Emission Point	Pollutants	(lb/hr)	(Tons/yr)	Basis of Calculation	(lb/hr)	(units of standard)
	See Attached			Calculation		Standard)
MH-2 c,e,f	Emission Calculations				E=3.59P ^{0.62}	-
		••••	I		<u> </u>	l
This source n	nay qualify as an insignific	cant activity.				
		<u> </u>			1	
						L
			<u> </u>			
			ļ ļ			
			<u> </u>			

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram 13. Is this unit or process in compliance with all applicable air pollution rules and regulations?

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

□yes ⊠no

List storage piles or other facility (if any):

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)
L			
		-	

Name of person preparing application:	Christa Andrew	
Signature:	Date:	2/21/19

PERMIT APPLICATION FOR MANUFACTURING OR PROCESSING OPERATION

•	 		
		un thin a	

- Do not write in this space
- 1. Name of firm or organization: Bunge North America, Inc.
- 2. Briefly describe the operation of this unit or process in your facility: (separate forms are to be submitted for each type of process or for multiple units of one process type. If the unit or process receives input material from, or provides input material to, another operation, please indicate the relationship between the operations.) An application should be completed for each alternative operating scenario.

	Operating scenario number <u>1</u>				
	MH-4 Meal Truck Loadout - with Ba	aghouse			
	MH-5 Meal Rail Loadout - with Bag	house			
3.	Type of unit or process (e.g., calcini	ing kiln, cupola furna	ace):	Truck and Rail Meal Loadout Sta	ations
	Make: NA		Model:	NA	Truck 300
	Rated process capacity (manufactu	rer's or designer's g	juaranteed r	naximum) in pounds/hour:	Rail 750
	Manufactured date: 1972-74			Proposed installation date:	NA
			Or	iginal installation date (if existing):	1972-74
		Reco	nstruction o	r Modification date (if applicable):	NA
ŀ.	Normal operating schedule:				
	Hours per day: 24	Days per week:	7	Weeks per year: _52	
	Peak production season (if any):	None			

5. Materials (feed input) used in unit or process (include solid fuel materials used, if any):

Material	Process weight average	Maximum (lb/hr)	Quantity tons/year
Soybean Meal – Truck	164 ton/hr	600,000	1,382,063 – total for both
Rail	164 ton/hr	1,500,000	
	ar summer and summer an analysis of a summer sector of the summer s		

6. Total heat input capacity of process heating equipment (exclude fuel used by indirect heating equipment previously described on Form ADEM-104): <u>NA</u> MMBtu/hr

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-		l			

7. Products of process or unit:

Products	Quantity/year	Units of production				
None						
8. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work practice standard (attach additional page if necessary):						
A plant wide throughput limit of 61,425,000 bushels per year is proposed.						

9. Is there any emission control equipment on this emission source? Yes No (Where a control device exists, Form ADEM-110 must be completed and attached).

10. Air contaminant emission points: (each point of emission should be listed separately and numbered so that it can be located on the attached flow diagram):

Emission Point	Height Above Grade (Ft)	Stack Base Elevation (Ft)	Diameter (Ft)	Gas Exit Velocity (Ft/Sec)	Volume of Gas Discharged (ACFM)	Exit Temperature (ºF)
MH-4	12	577	34" x 39"	54.3	30,000	Ambient
MH-5	12	577	3 <u>4" x 39</u> "	54.3	_30,000	Ambient
	· · · · · · · · · · · · · · · · · · ·					
				······································		
		<u></u>				
D						

* std temperature is 68°F - std pressure is 29.92" in hg.

11. Air contaminants emitted: basis of estimate (material balance, stack test, emission factor, etc.) must be clearly indicated on calculations appended to this form. Fugitive emissions must be included and calculations must be appended.

		Potential E	missions		Regulatory En	nission Limit
Emission				Basis of		(units of
Point	Pollutants	<u>(lb/hr)</u>	(Tons/yr)	Calculation	(lb/hr)	standard)
MH-4	See Attached Emission Calculations				E=17.31P ^{0.16}	-
MH-5	See Attached Emission Calculations				E=17.31P ^{0.16}	-
				······································		
		• • • • • • • • • • • • • • • • • • •				
	· · · · · · · · · · · · · · · · · · ·					
		·····			<u> </u>	

- 12. Using a flow diagram:
 - (1) Illustrate input of raw materials,
 - (2) Label production processes, process fuel combustion, process equipment and air pollution control equipment,
 - (3) Illustrate locations of air contaminant release so that emission points under item 10 can be identified.

(Attach extra pages as needed) Process flow diagram 13. Is this unit or process in compliance with all applicable air pollution rules and regulations?

⊠yes □no

(if "no", a compliance schedule, Form ADEM-437 must be completed and attached.)

14. Does the input material or product from this process or unit contain finely divided materials which could become airborne?

⊠yes □no

15. If "yes", is this material stored in piles or in some other facility as to make possible the creation of fugitive dust problems?

□yes ⊠no

List storage piles or other facility (if any):

Type of material	Particle size (diameter or screen size)	Pile size or facility (average tons)	Methods utilized to control fugitive emissions (wetted, covered, etc.)
	-		

Name of person preparing application:	Christa Andrew	
Signature:	Date:	February 21, 2019

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

		i	-	Do not write in this space
1.	Name of firm or organization:	Bunge No	orth America, Inc	
2.	Unit Description (i.e. No. 1 Po	wer Boiler):	BO-3	
	Equipment manufacturer's ir	nformation		
	Name of manufacturer:	English Boiler	and Tube, Co.	
	Model number:	APP-82.5-250)	
	Rated capacity-input:	99MM	(Btu/hr.)	
	Boiler type:	🗌 Fire tube	🛛 Water tube	other(specify):
		Manufactur	ed date: 1997	PH/PH/1000000000000000000000000000000000
	Pr	oposed installati	ion date: NA	MAGNALINA
	Original inst	allation date (if e	existing): <u>1997</u>	
	Reconstruction or Modific	ation date (if app	olicable): NA	Minore Spinister III

3. Type of fuel used:

Primary:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	1000	Btu/ft ³	_			
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas		Btu/ft ³				
Wood		Btu/lb				
Other (specify)		Btu/gal				

4.	Purpose (if multipurpos	se, note p	ercent in each use catego	ory):				
	Space heat	%	Power generation		%	Process heat	100	%
	Other (specify):	na 1949,000 - 1 ₉₄₀ ,000,000,000,000,000,000			****	1997, 199 (2011), 119 (119), 119 (119)		
5.	Normal schedule of ope	eration:						
	Hours per day:	24	Days per week:	7	Week	ks per year:	52	
6.	For each regulated poll	utant, des	cribe any limitations on s	ource ope	ration w	hich affects emiss	ions or any	work
	practice standard (attac	ch additio	nal page if necessary):					

7. Fugitive Emissions (attach calculation worksheets):

POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate		N/A			
Sulfur dioxide		N/A			
Nitrogen oxides		N/A			
Carbon monoxide		N/A			
VOC's		N/A			
Other		N/A			

8. Is there any emission control equipment on this emission source?

Yes No (If "yes", complete form ADEM-110) Low NOx Burner.

9. Point Emissions (attach calculation worksheets):

POLLUTANT	POTE EMISS Ib/hr		BASIS OF CALCULATION	REGULATORY EMISSION LIMIT (lb/hr)	EMISSI	ATORY DN LIMIT f standard)
Particulate	0.75	2.1	Emission Factors	1.45		
Sulfur dioxide	0.06	0.17	Emission Factors			
Nitrogen oxides	4.82	13.46	Emission Factors	9.70		
Carbon monoxide	8.32	23.21	Emission Factors			
VOC's	0.54	1.52	Emission Factors			
n-hexane	0.18	0.50	Emission Factors			
). Stack data:						
Height above grade	5	<u>5 </u>	eet) Gas ten	nperature at exit	116	_ (°F)
Inside diameter at exit	3	<u>.5</u> (f	eet) Volume	of gas discharged	24,000	(ACFM)
Base Elevation	5	<u>77</u> (f	eet)			
Are sampling ports ava	ilable? 🔲	Yes 🖾 No	o (If "yes", describe.	Draw on separate she	et if necessar	():
			•	•	•	
					•	
1. Is this item in compliance	e with all a	pplicable a	ir pollution rules and r	egulations?		
1. Is this item in compliance			ir pollution rules and r dule, form ADEM-114	-		
1. Is this item in compliance	o", a compl	iance sche	-	-		

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

		[-	Do not write in this space
1.	Name of firm or organization:	Bunge Nor	th America, Inc	
2.	Unit Description (i.e. No. 1 Po	wer Boiler):	BO-4	
	Equipment manufacturer's ir	formation		
	Name of manufacturer:	English Boiler a	and Tube, Co.	
	Model number:	APP-82.5-250		
	Rated capacity-input:	99MM	(Btu/hr.)	
	Boiler type:	Fire tube	🛛 Water tube	other(specify):
		Manufacture	ed date: 1997	
	Pr	oposed installatio	on date: NA	
	Original inst	allation date (if e	kisting): 1997	
	Reconstruction or Modification	ation date (if appl	icable): NA	

3. Type of fuel used:

Primary:

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb	1			
Fuel Oil	-	Btu/gal				
Natural Gas	1000	Btu/ft ³	1			
L. P. Gas	-	Btu/ft ³	1			
Wood	-	Btu/lb	1			
Other (specify)	-					

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas		Btu/ft ³				
Wood		Btu/lb				
Other (specify)		Btu/gal				

4.	Purpose (if multipurpo	se, note p	percent in each use catego	ory):					
	Space heat	%	Power generation		%	Process heat	100	%	
	Other (specify):								
5.	Normal schedule of op	eration:							
	Hours per day:	24	Days per week:	7	Wee	ks per year:	52		
6.	For each regulated poll	utant, de	scribe any limitations on s	ource op	eration	which affects emiss	ions or any	work	
	practice standard (atta	ch additic	onal page if necessary):						

7. Fugitive Emissions (attach calculation worksheets):

POLLUTANT	POTE EMISS	NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate		alarana nav and fo vitt Waranan, avenuence me			
Sulfur dioxide					
Nitrogen oxides					
Carbon monoxide					
VOC's					
Other					

8. Is there any emission control equipment on this emission source?

Yes INo (If "yes", complete form ADEM-110) Low NOx Burner.

9. Point Emissions (attach calculation worksheets):

						ł	
	POLLUTANT	POTE EMISS		BASIS OF CALCULATION	REGULATORY EMISSION LIMIT		LATORY ON LIMIT
		lb/hr	t/yr		(lb/hr)	(in units c	of standard)
F	Particulate	0.75	2.10	Emission Factors	1.45		
5	Sulfur dioxide	0.06	0.17	Emission Factors			
Ŀ	Nitrogen oxides	4.82	13.46	Emission Factors	9.70		- 14
4	Carbon monoxide	8.32	23.21	Emission Factors			- <u></u>
	VOC's	0.54	1.52	Emission Factors			
Ľ	n-hexane	0.18	0.50	Emission Factors			
	· <u> </u>						
). Stad	ck data:						
He	eight above grade	5	<u>5 </u>	eet) Gas ten	nperature at exit	116	_ (°F)
Ins	side diameter at exit	3	<u>.5 </u>	eet) Volume	of gas discharged	24,000	_ (ACFM)
	se Elevation	5	<u>77</u> (f	eet)			
Ba							
			Yes ⊠No		Draw on separate sh	eet if necessar	y):
			Yes 🖾 No		Draw on separate sh	eet if necessar	y) :
			Yes 🖾No		Draw on separate sh	eet if necessar	y) :
	e sampling ports ava	ilable?			•	eet if necessar	y) :
Are	e sampling ports ava	iilable? □ e with all a	oplicable a	o (lf "yes", describe.	egulations?	eet if necessar	y) :
Are . Is th ⊠ ∖	e sampling ports ava	uilable? □ e with all a o", a compl	oplicable a iance sche	o (If "yes", describe.	egulations?	eet if necessar	y) :

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

				Do not write in t	this space
1.	Name of firm or organization:	Bunge No	orth America, Inc		
2.	Unit Description (i.e. No. 1 Po	wer Boiler):	BO-5		
	Equipment manufacturer's ir	formation			
	Name of manufacturer:	English Boile	r and Tube, Co.		
	Model number:	To be determ	ined		
	Rated capacity-input:	120 MM	(Btu/hr.)		
	Boiler type:	🗌 Fire tube	🛛 Water tube	dther(specify):	
		Manufactu	red date: 2019		
	Pr	oposed installat	ion date: 2020		
	Original inst	allation date (if	existing): NA		
	Reconstruction or Modific	ation date (if ap	plicable): NA		

3. Type of fuel used:

Primary:

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	-	Btu/lb	Cullur			
Fuel Oil	-	Btu/gal				
Natural Gas	1000	Btu/ft ³	T			
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas		Btu/ft ³				
Wood		Btu/lb				
Other (specify)		Btu/gal				Soybean Oil

4.	Purpose (if multipurp	ose, note p	percent in each use catego	ory):				
	Space heat	%	Power generation		%	Process heat	100	%
	Other (specify):	- HW 2010-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
5.	Normal schedule of c	peration:						
	Hours per day:	24	Days per week:	7	Week	s per year:	52	
6.	For each regulated p	ollutant, de	scribe any limitations on s	ource op	eration w	hich affects emission	ions or any	[,] work
	practice standard (at	tach additio	onal page if necessary):			WR11070000077770000000000000000000000000		
		1						

7. Fugitive Emissions (attach calculation worksheets):

POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate					
Sulfur dioxide		an a chun ann a Ba-thi dh at Mataganag a saona an ar			
Nitrogen oxides					
Carbon monoxide					
VOC's					
Other		an Mantalan (199) (11 (199)			
			·		

8. Is there any emission control equipment on this emission source?

□Yes ⊠No (If "yes", complete form ADEM-110)

9. Point Emissions (attach calculation worksheets):

		1				T
	POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
		lb/hr	t/yr		(lb/hr)	(in units of standard)
	Particulate	0.91	2.55	Emission Factors	1.45	
	Sulfur dioxide	0.072	0.20	Emission Factors		
	Nitrogen oxides	5.84	16.31	Emission Factors	9.70	
	Carbon monoxide	10.08	28.14	Emission Factors		
	VOC's	0.66	1.84	Emission Factors	: 	
	n-hexane	0.22	0.60	Emission Factors		
					· · · · · · · · · · · · · · · · · · ·	
				(
10. S	tack data:					
I	leight above grade	5	5 (f	eet) Gas ten	nperature at exit	<u>116</u> (°F)
i	nside diameter at exit	3	<u>.5</u> (f	eet) Volume	of gas discharged	29,550 (ACFM)
I	Base Elevation	5	<u>77</u> (f	eet)		
1	Are sampling ports ava	ilable? 🔲	Yes ∏No	o (If "yes", describe.	Draw on separate she	et if necessary):
				1971-1971-1971-1971-1971-1971-1971-1971		
11. Is	this item in complianc	e with all a	pplicable a	ir pollution rules and r	egulations?	
\boxtimes] Yes 🗌 No (if "no	o", a compl	iance sche	dule, form ADEM-114	l, must be attached.)	
Name	of person preparing a	pplication:	Chri	sta Andrew		
Signa	ture:				Date: Febru	ary 21, 2019

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

		[Do not write in this space
1.	Name of firm or organization:	Bunge No	rth America, Inc	
2.	Unit Description (i.e. No. 1 Po	wer Boiler):	REF-1 and REF-2	Process Boilers
	Equipment manufacturer's in	formation		
	Name of manufacturer:	GEKA		
	Model number:	NUK Model 22	250	
	Rated capacity-input:	13MM	(Btu/hr.)	
	Boiler type:	Fire tube	🛛 Water tube	other(specify):
		Manufactur	ed date: 1997	
	Pr	oposed installati	on date: NA	
	Original inst	allation date (if e	existing): 1997	
	Reconstruction or Modific	ation date (if app	licable): NA	

3. Type of fuel used:

Primary:

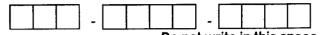
Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
Coal	Oomeni	Btu/lb		7.511		
Fuel Oil	-	Btu/gal	+			
Natural Gas	1000	Btu/ft ³	1			<u> </u>
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-					

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	-	Btu/lb				
Fuel Oil	-	Btu/gal				
Natural Gas	-	Btu/ft ³				
L. P. Gas	-	Btu/ft ³				
Wood	-	Btu/lb				
Other (specify)	-	Btu/gal				

4.	Purpose (if multipurpos	se, note p	ercent in each use catego	ory):				
	Space heat	%	Power generation		%	Process heat	100	
	Other (specify):	n ay angona ayan yarana dika iyar	•••••••••••••••••••••••••••••••••••••••				,	
5.	Normal schedule of ope	eration:						
	Hours per day:	24	Days per week:	7	Week	s per year:	52	
6.	For each regulated poll	utant, des	cribe any limitations on s	ource ope	ration w	hich affects emissi	ons or any	work
	practice standard (attac	h additior	nal page if necessary):		ar 117			1999,
			···· ······	.,				

7. Fugitive Emissions (attach calculation worksheets):


POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate					
Sulfur dioxide					
Nitrogen oxides					
Carbon monoxide					
VOC's					
Other					

8. Is there any emission control equipment on this emission source?

9. Point Emissions (attach calculation worksheets):

POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard
Particulate	0.2	0.43	Emission Factors	0.18 per boiler	
Sulfur dioxide	0.016	0.03	Emission Factors		
Nitrogen oxides	2.6	5.66	Emission Factors	1.6	
Carbon monoxide	2.18	4.75	Emission Factors		
VOC's	0.14	0.31	Emission Factors		
n-hexane	0.05	0.10	Emission Factors		
). Stack data:					
Height above grade	3	<u>33 (f</u>	eet) Gas ter	nperature at exit	(°F)
Inside diameter at e	xit	2 (f	eet) Volume	of gas discharged	10,400(ACFM
Base Elevation	5	<u>77 </u>	eet)		
Are sampling ports a	available? 🗌	Yes 🖾 No	o (If "yes", describe.	Draw on separate sh	eet if necessary):
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1840 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -		
1. Is this item in complia	nce with all a	pplicable a	ir pollution rules and r	egulations?	
🛛 Yes 🗌 No (if	"no", a compl	iance sche	dule, form ADEM-114	4, must be attached.)	
ame of person preparing	annlication.	Chri	sta Andrew		

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

Do not write in this space

1.	Name of firm or organization	Bunge North A	merica, Inc					
2.	Unit Description (i.e. No. 1 Power Boiler): REF-5 Steam Generator							
	Equipment manufacturer's information							
	Name of manufacturer:	Garioni						
	Model number:	GMT-HP 1000						
	Rated capacity-input:	5 MM	_ (Btu/hr.)					
	Boiler type:	🗌 Fire tube	✓ Water tube	☐ other(specify):				
		Manufactured	date:					
	Prop	osed installation	n date:					
	Original install	ation date (if exi	sting): 7/2/12					
	Reconstruction		date (if cable):					

3. Type of fuel used:

Primary:

Fuel	Heat Content	Units	Max. % Sulfur	Max. % Ash	Grade No. [fuel oil only]	Supplier [used oil only]
			Juliu	A311		
Coal	NA	Btu/lb				
Fuel Oil	NA	Btu/gal				
Natural Gas	1000	Btu/ft ³				
L. P. Gas	NA	Btu/ft ³				
Wood	NA	Btu/lb		_		
Other (specify)	NA					

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	NA	Btu/lb				
Fuel Oil	NA	Btu/gal				
Natural Gas	NA	Btu/ft ³				
L. P. Gas	NA	Btu/ft ³				
Wood	NA	Btu/lb				
Other (specify)	NA					

4.	Purpose (if multipurpose, note percent in each use category):							
	Space heat	%	Power generation	%	✓Process heat	100	%	
	Other (specify):							
5.	Normal schedule of opera	ation:						
	Hours per day: 24		Days per week: ⁷	Week	s per year: ⁵²			
6. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work								

practice standard (attach additional page if necessary):

7. Fugitive Emissions (attach calculation worksheets):

POLLUTANT	POTENTIAL EMISSIONS		BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT	
	lb/hr	t/yr		(lb/hr)	(in units of standard)	
Particulate						
Sulfur dioxide						
Nitrogen oxides						
Carbon monoxide		<u></u>				
VOC's						
Other		an falled a Third Concerning State and Michael Systematical State State				
		de baie 1921 i resto eta i statu anda ante de la ferio i				

8. Is there any emission control equipment on this emission source?

Yes No (If "yes", complete form ADEM-110)

9. Point Emissions (attach calculation worksheets):

POLLUTANT		INTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT		ATORY ON LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of	standard)
Particulate	0.04	0.12	Emission Factors		0.68 lbs/mm B	TU
Sulfur dioxide	0.003	0.01	Emission Factors		4.0 lbs/mm B1	U
Nitrogen oxides	0.2	0.61	Emission Factors			
Carbon monoxide	0.42	1.28	Emission Factors			
VOC's	0.03	0.08	Emission Factors			
Other	0.01	0.03	Emission Factors	n-hexane		
. Stack data: Height above grade	37	(feet) Gas te	mperature at exit	700	_ (°F)
Inside diameter at ex	xit <u>0.833</u>	(feet) Volum	e of gas discharged	2600	(ACFM)
Base Elevation	577		feet)			
Are sampling ports a	available?	TYes 🖌	No (If "yes", desc	cribe. Draw on separ	ate sheet if ne	ecessary):
Are sampling ports a	available?	TYes 🖌	No (If "yes", dese	cribe. Draw on separ	ate sheet if ne	ecessary):
Are sampling ports a	available?	TYes 🖌	No (If "yes", dese	cribe. Draw on separ	ate sheet if ne	ecessary):
		1869101341852613861686118611861186118			ate sheet if ne	ecessary):
. Is this item in complia	nce with a	all applica	ble air pollution rule			ecessary):
. Is this item in complia	nce with a no", a com	all applica pliance se	ble air pollution rule chedule, form ADEM	es and regulations?		ecessary):

PERMIT APPLICATION FOR INDIRECT HEATING EQUIPMENT (FUEL BURNING EQUIPMENT)

 1 1 1	1 1		
 i			
	`	** * * * **	in annan

Do not write in this space

1.	Name of firm or organizati	on: Bunge North A	merica, Inc			
2.	Unit Description (i.e. No. 1	Power Boiler):	BO-6 Hot Water Heater			
	Equipment manufacturer	's information				
	Name of manufacturer:	Ajax				
	Model number:	WRFG 5250				
	Rated capacity-input:	5.25 MM	(Btu/hr.)			
	Boiler type:	🗌 Fire tube	✓ Water tube	other(specify):		
		Manufacture	d date:			
	Proj	oosed installatio	n date:			
	Original installation date (if existing): <u>12/15/12</u>					
	Reconstruction		date (if cable):			

3. Type of fuel used:

Primary: Supplier Heat Max. % Max. % Grade No. Fuel Content Units Sulfur Ash [fuel oil only] [used oil only] Coal NA Btu/lb Fuel Oil NA Btu/gal **Natural Gas** 1000 Btu/ft³ NA Btu/ft³ L. P. Gas NA Btu/lb Wood Other (specify) NA

Standby:

	Heat		Max. %	Max. %	Grade No.	Supplier
_ Fuel	Content	Units	Sulfur	Ash	[fuel oil only]	[used oil only]
Coal	NA	Btu/lb				
Fuel Oil	NA	Btu/gal				
Natural Gas	NA	Btu/ft ³				
L. P. Gas	NA	Btu/ft ³				
Wood	NA	Btu/lb				
Other (specify)	NA					

4.	Purpose (if multipurpose, note percent in each use category):								
	Space heat	%	Power generation	%	✓Process heat	100	%		
	Other (specify):	water a contract of water first of the				an ta training and the second s			
5.	Normal schedule o	foperation	:						

Hours per day: ²⁴ Days per week: ⁷ Weeks per year: ⁵⁰

6. For each regulated pollutant, describe any limitations on source operation which affects emissions or any work

practice standard (attach additional page if necessary):

7. Fugitive Emissions (attach calculation worksheets):

POLLUTANT		NTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate	NA				
Sulfur dioxide					
Nitrogen oxides					
Carbon monoxide					
VOC's					
Other				· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	

8. Is there any emission control equipment on this emission source?

Yes No (If "yes", complete form ADEM-110)

9. Point Emissions (attach calculation worksheets):

POLLUTANT		INTIAL SIONS	BASIS OF CALCULATION	REGULATORY EMISSION LIMIT	REGULATORY EMISSION LIMIT
	lb/hr	t/yr		(lb/hr)	(in units of standard)
Particulate	0.04	0.04	Emission Factors		
Sulfur dioxide	0.003	0.003	Emission Factors		
Nitrogen oxides	0.53	0.55	Emission Factors		
Carbon monoxide	0.44	0.46	Emission Factors		
VOC's	0.03	0.03	Emission Factors		
Other	0.03	0.03	EF - PM cond.		
	631	658	CO2e		
10. Stack data:		•			
Height above grade	49	(1	feet) Gas te	mperature at exit	²⁵⁰ (°F)
Inside diameter at ex	kit <u>1.5</u>		feet) Volume	e of gas discharged	1100 (ACFM)
Base Elevation	577	(1	feet)		
Are sampling ports a	available?	[_Yes [√	No (If "yes", desc	ribe. Draw on separa	ate sheet if necessary):
	New Million Instally Designed and the state of the state	1911-1911-1911-1911-1911-1911-1911-191			
11. Is this item in complia	nce with a	all applica	ble air pollution rule	s and regulations?	
🗹 Yes 🛛 No (if "r	no", a com	pliance so	chedule, form ADEN	I-114, must be attache	ed.)
Name of person preparin	g applicat	ion: Christa	Andrew		
Signature:				Date: February	21, 2019

PERMIT APPLICATION

FOR

AIR POLLUTION CONTROL DEVICE

		Do not write in this space
1.	Name of firm or organization	Bunge North America, Inc
2.	Type of pollution control device: (if each specific device.)	more than one, check each; however, separate forms are to be submitted for
	Settling chamber	Electrostatic precipitator
		⊠Baghouse
	Cyclone	Multiclone
	Absorber	Adsorber
	Condenser	Wet Suppression
	Wet scrubber (kind):	
	Stage 1 - Vapor balance (type)	
	Other (describe):	
3.	Control device manufacturer's infor	mation:
	Name of manufacturer MAC	Model no. 120 MCF 361
٨	Emission source to which dovice is	installed or is to be installed:

4. Emission source to which device is installed or is to be installed:

- RS-2
- 5. Emission parameters:

	Pollutant #1	Pollutant #2	Pollutant #3
Pollutants removed	PM	PM-10	PM-2.5
Mass emission rate (#/hr)	•		
Uncontrolled	68.6	38.3	6.5
Designed	0.08	0.08	0.04
Manufacturer's guaranteed	NA	NA	NA
Mass emission rate (units of the Standard	d)		
Required by regulation	E=17.31P ^{0.16}	NA	NA
Manufacturer's guaranteed	NA	NA	NA
Removal efficiency (%)		••••••••••••••••••••••••••••••••••••••	·
Designed	99.9	99.9	99.9
Manufacturer's guaranteed	NA	NA	NA

6. Gas conditions:

	Inlet	Intermediate Locations	Outlet
Volume (SDCFM, 68 ^e f, 29.92" hg)	12,419	NA	12,419
(ACFM, existing conditions)	12,419	NA	12,419
Temperature (°F)	Ambient	NA	Ambient
Velocity (ft/sec)	NA	NA	72
Percent moisture	Ambient	NA	Ambient
Pressure drop (inches H ₂ 0)	NA	NA	5

7. Stack dimensions:

Height above grade	^ 30	(feet)
Inside diameter at exit	18" x 23"	(feet)
Base Elevation	577	(feet)

8. Draw a flow diagram which includes gas exit from process, each control device, location of by-pass, fan or blower, each emission point, exits for collected pollutants, and location of sampling ports.

9. E	Enclosed	are:
------	----------	------

Blueprints	Particle size distribution report
Manufacturer's literature	Size-efficiency curves
Emissions test of existing installation	Fan curves
Other	

10. If the pollution control device is of unusual design, please provide a sketch of the device.

11. List below the important operating parameters for the device. (For example: air/cloth ratio and fabric type, weight, and weave for baghouse; throat velocity and water use rate for a venturi scrubber; etc.)

	Differential Pressure Drop
12.	By-pass (if any) is to be used when:
	None

13. Disposal of collected air pollutants:

6 	Solid waste	Solid waste	Liquid waste	Liquid waste
Volume	None	None	None	None
Composition				
Is waste hazardous?				
Method of disposal				
Final destination				

If collected air pollutants are recycled, describe:

Collected dust is recombined into the product stream.

Name of person preparing application

Christa Andrew

Signature	Date	February 21, 2019

PERMIT APPLICATION

FOR

AIR POLLUTION CONTROL DEVICE

		Do not write in this space
1.	Name of firm or organization	Bunge North America, Inc
2.	Type of pollution control device: (if each specific device.)	more than one, check each; however, separate forms are to be submitted for
	Settling chamber	Electrostatic precipitator
	Afterburner	⊠Baghouse
		Multiclone
	Absorber	Adsorber
	Condenser	Wet Suppression
	Wet scrubber (kind):	
	Stage 1 - Vapor balance (type)	
	Other (describe):	
3.	Control device manufacturer's infor	mation:
	Name of manufacturer MAC	Model no. 120 MCF 361
4.	Emission source to which device is	installed or is to be installed:

- CD-1 (Existing baghouse)
- 5. Emission parameters:

	Pollutant #1	Pollutant #2	Pollutant #3
Pollutants removed	РМ	PM-10	PM-2.5
Mass emission rate (#/hr)			.
Uncontrolled	33.8	8.6	1.4
Designed	0.31	0.31	0.15
Manufacturer's guaranteed	NA	NA	NA
Mass emission rate (units of the Standard	d)		· · · · · · · · · · · · · · · · · · ·
Required by regulation	E=17.31P ^{0.16}	NA	NA
Manufacturer's guaranteed	NA	NA	NA
Removal efficiency (%)			•
Designed	99.9	99.9	99.9
Manufacturer's guaranteed	NA	NA	NA

6. Gas conditions:

	Inlet	Intermediate Locations	Outlet
Volume (SDCFM, 68°f, 29.92" hg)	25310	NA	25310
(ACFM, existing conditions)	25310	NA	25310
Temperature (°F)	Ambient	NA	Ambient
Velocity (ft/sec)	NA	NA	151.9
Percent moisture	Ambient	NA	Ambient
Pressure drop (inches H ₂ 0)	NA	NA	5

7. Stack dimensions:

Height above grade	10	(feet)
Inside diameter at exit	20" × 20"	(feet)
Base Elevation	577	(feet)

8. Draw a flow diagram which includes gas exit from process, each control device, location of by-pass, fan or blower, each emission point, exits for collected pollutants, and location of sampling ports.

Blueprints	Particle size distribution report
Manufacturer's literature	Size-efficiency curves
Emissions test of existing installation	[]]Fan curves
Other	

10. If the pollution control device is of unusual design, please provide a sketch of the device.

11. List below the important operating parameters for the device. (For example: air/cloth ratio and fabric type, weight, and weave for baghouse; throat velocity and water use rate for a venturi scrubber; etc.)

	Differential Pressure Drop
12	. By-pass (if any) is to be used when:
	None

13. Disposal of collected air pollutants:

	Solid waste	Solid waste	Liquid waste	Liquid waste
Volume	None	None	None	None
Composition				
Is waste hazardous?				
Method of disposal				
Final destination				

If collected air pollutants are recycled, describe:

Collected dust is recombined into the product stream.

Name of person preparing application Christa Andrew

Signature Date 2/21/19

PERMIT APPLICATION

FOR

AIR POLLUTION CONTROL DEVICE

		Do not write in this space
1.	Name of firm or organization	Bunge North America, Inc
2.	Type of pollution control device each specific device.)	ce: (if more than one, check each; however, separate forms are to be submitted for
	Settling chamber	Electrostatic precipitator
		⊠Baghouse
	Absorber	Adsorber
	Condenser	Wet Suppression
	Wet scrubber (kind):	
	Stage 1 - Vapor balance (typ	эе)
	Other (describe):	
3.	Control device manufacturer's	s information:
	Name of manufacturer	To be determined Model no. To be determined.
4.	Emission source to which dev	vice is installed or is to be installed:

- Emission source to which device is installed or is to be ins PR-7-BH
- 5. Emission parameters:

	Pollutant #1	Pollutant #2	Pollutant #3
Pollutants removed	PM	PM-10	PM-2.5
Mass emission rate (#/hr)		• • • • • • • • • • • • • • • • • • •	
Uncontrolled	80.94	80.94	40.47
Designed	1.28	1.28	0.64
Manufacturer's guaranteed	NA	NA	NA
Mass emission rate (units of the Standard	d)		
Required by regulation	E=17.31P ^{0.16}	NA	NA
Manufacturer's guaranteed	NA	NA	NA
Removal efficiency (%)			
Designed	99.9	99.9	99.9
Manufacturer's guaranteed	NA	NA	NA

6. Gas conditions:

	Inlet	Intermediate Locations	Outlet
Volume (SDCFM, 68 ^o f, 29.92" hg)	40,000	NA	40,000
(ACFM, existing conditions)	40,000	NA	40,000
Temperature (°F)	Ambient	NA	Ambient
Velocity (ft/sec)	~58.3	NA	58.3
Percent moisture	Ambient	NA	Ambient
Pressure drop (inches H ₂ 0)	NA	NA	NA

7. Stack dimensions:

Height above grade	60	(feet)
Inside diameter at exit	3.333 x 3.333	(feet)
Base Elevation	577	(feet)

8. Draw a flow diagram which includes gas exit from process, each control device, location of by-pass, fan or blower, each emission point, exits for collected pollutants, and location of sampling ports.

a. Lhouseu ale.	9.	Enclosed	are:
-----------------	----	----------	------

Blueprints	Particle size distribution report
Manufacturer's literature	Size-efficiency curves
Emissions test of existing installation	Fan curves
Other	

10. If the pollution control device is of unusual design, please provide a sketch of the device.

11. List below the important operating parameters for the device. (For example: air/cloth ratio and fabric type, weight, and weave for baghouse; throat velocity and water use rate for a venturi scrubber; etc.)

	Differential pressure drop.
12.	By-pass (if any) is to be used when:
	None

13. Disposal of collected air pollutants:

د	Solid waste	Solid waste	Liquid waste	Liquid waste
Volume	None	None	None	None
Composition				
Is waste hazardous?				
Method of disposal				
Final destination				

If collected air pollutants are recycled, describe:

Collected dust is recombined into the product stream.

Name of person preparing application

Christa Andrew

Signature Date December 6, 2018

Sanderson, Skyler

From:	Christa Andrew <christa.andrew@bunge.com></christa.andrew@bunge.com>
Sent: Tuesday, April 16, 2019 11:19 AM	
To: Sanderson, Skyler	
Subject: Bunge - Decatur, PSD Permit Application	
Attachments: Decatur, AL - application cover letter and Form 103 - signed.pdf; Decatur, AL -	
	Form107.pdf; Decatur, AL - Fire Pump emissions.xlsx; Decatur, AL - Fire Pump Specs.pdf; Application Cover Page and Summary-4-15-19.doc

Skyler:

Attached are the forms, calculations, and specs for the new diesel pump to be included with the expansion. I have also revised the PSD summary I previously submitted. Is there anything you need for this addition? I will also mail this when I know what I am including is complete.

Thanks,

Christa Andrew Environmental Specialist Bunge North America 1391 Timberlake Manor Parkway Chesterfield, MO 63017 O: 314-292-2707 C: 314-603-7986

"Freedom is never more than one generation away from extinction. We didn't pass it to our children in the bloodstream. It must be fought for, protected, and handed on for them to do the same." Ronald Reagan

This message is intended only for the named recipient and may contain confidential, proprietary or legally privileged information. No confidentiality or privilege is waived or lost by any misdirected transmission.

If you received this message in error, please notify us immediately by telephone at +1 314 292-2000 and immediately delete this message from your system.

If you are not the intended recipient, you must not use, disclose, distribute or copy any part of this message.

BŪNGE

April 15, 2019

Skyler Sanderson Environmental Engineer Air Division Alabama Department of Environmental Management 1400 Coliseum Blvd Montgomery, AL 36110

RE: Bunge North America, Inc. – Decatur Facility Facility ID 712-0026

Dear Mr. Sanderson:

Please find enclosed a permit application package for a project at our Bunge North America – Decatur, Alabama facility. This project will consist of the installation of a diesel-fired fire water pump. It should be considered part of the PSD permit application previously submitted. This application consists of permit application forms, specs and emission calculations. The fire pump engine will be subject to 40 CFR 60 Subpart IIII and 40 CFR 63 Subpart ZZZZ. The fire pump engine certification demonstrates that the replacement engine meets all of the applicable emission limits.

Bunge understands that no permit application fee is required to be submitted with this application and you will determine how much the permit fee will be and invoice the plant at a later date.

Please contact Jason Davis at jasonw.davis@bunge.com or 256-301-4038 or Christa Andrew in our corporate office at 314-292-2707 or by email at christa.andrew@bunge.com if you have questions or concerns regarding this application.

Sincerely,

Bunge North America, Inc.

Michael Klauke Facility Manager

Enclosure

Cc: Jason W. Davis – Bunge North America, Decatur Christa Andrew. St. Louis

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

AIR DIVISION

INSTRUCTIONS FOR COMPLETION OF

FACILITY IDENTIFICATION FORM ADEM 103

This form is to be completed in duplicate for each facility operated by your firm or institution in the State of Alabama. If permit application forms are not received at every facility of a firm or institution which has more than one facility, it is still the responsibility of the owner or operator to secure application forms and submit them.

Items 1-4: Self-explanatory

Item 5: Universal Transverse Mercator Coordinates (for Alabama, N-S is between 3337.000km-3875.000km and E-W is between 362.000km-709.000km; Zone 16)

- Items 6-7: Self-explanatory
- Item 8: There must be at least one copy (in duplicate) of Forms ADEM 104-438. The total number of each of these will depend on the number of air contaminant sources at the facility. Submission of some of the other forms may not be necessary. This can be determined from the instructions. Each form must be completed in duplicate, but the original and copy are to be counted as one form.
- Item 9: Self-explanatory
- Item 10: Any facility applying for either a Synthetic Minor Operating Permit (SMOP) or a Major Operating Permit should list each pollutant and its emission rate for the facility for which the application is submitted. Also, indicate whether each pollutant is major (emissions > 100 TPY for any criteria pollutants, emissions > 10 TPY for any single HAP, or emissions > 25 TPY for any combination of HAPs). The most recent air emissions inventory done for annual operating permit fees can be substituted for Item 10, provided it shows the totals for each pollutant in the inventory. Indicate in the space that the air inventory is attached if this option is chosen.
- Item 11: Self-explanatory PSD - Prevention of Deterioration NSPS - New Source Performance Standards NESHAP - National Emissions Standards for Hazardous Air Pollutants Title I - Attainment and Maintenance of NAAQS Title IV - Acid Rain Title VI - Stratospheric Ozone and Global Climate Protection
- Item 12: Identify and list any source or activity that will be considered insignificant (emitting less than 5 TPY of any criteria pollutant, 1000 lb/yr of any air toxic, or included in the insignificant activities list previously established by the Department). Supporting documentation, including calculations, should be submitted for each activity.
- Item 13: Self-explanatory
- Item 14: Indicate any actual emission test of air contaminants for any operations covered in this application.

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT (AIR DIVISION)

			Do not Wr	ite in <u>T</u>	his Spa	ce	•
F	acility Nu	mber		-			
	2	L					
CONSTRUCTION/OPERA FACILITY IDEN			TION				
1. Name of Facility, Firm, or Bunge North America, Inc Institution:							
Facility Physica	Location	Address					
1400 Market St NE Street & Number:							
Desetur			35601				
City: County: Morgan			Zip:				
Facility Mailing Addres	ss (If diffe	rent from abo	ve)				
Same							
Address or PO Box:							1
City: State:			Zip:				
Owner's Busine	ss Mailing	g Address					
Bunge North America, Inc							
2. Owner:							
11720 Borman Dr			St Louis				
Street & Number: City:							
MO 63146 314-292-2000							
	Telephon						
Responsible Official's	DUSINESS	mailing Addre	255				
3. Responsible Official: Michael Klauke		-	Plant Mar Title:	nager			
1400 Market St NE Street & Number:							
Succi & number.							
City: AL State:	-		35601 Zip:				
ony. State.			• • • • • • • • • • • • • • • • • • • •				
Zalanbana Numbari			el.klauke@bung	e.com			
Telephone Number: E-mail Address: Plant Contact Information							
Frant Conta							
Jason W. Davis 4. Plant Contact:		Title: Sa	afety & Environn	nental M	anager		
			/ davis@buncc	com			
256-301-4038 jasonw.davis@bunge.com Telephone Number: E-mail Address:							
5. Location Coordinates:							
503150	38	329100		_			
	E-W			N	I-S		
Latitude/Longitude ^{34° 36' 13.4" N}		6° 57' 56.3" W		L	ONG		
ADEM Form 103 01/10 m5			Page	1 of 6			

6.	Permit application is made for:
	Existing source (initial application)
	Modification
	New source (to be constructed)
	Change of ownership
	Change of location
	Other (specify)
	Existing source (permit renewal)
	If application is being made to construct or modify, please provide the name and address of installer or contractor Not yet selected
	Telephone
	Date construction/modification to begin to be completed
7.	Permit application is being made to obtain the following type permit:
	Air permit
	Major source operating permit
	Synthetic minor source operating permit
_	General permit
8.	Indicate the number of each of the following forms attached and made a part of this application: (if a form does not apply to your operation indicate "N/A" in the space opposite the form). Multiple forms may be used as required.
	ADEM 104 - INDIRECT HEATING EQUIPMENT
	ADEM 105 - MANUFACTURING OR PROCESSING OPERATION
	ADEM 106 - REFUSE HANDLING, DISPOSAL, AND INCINERATION
	ADEM 107 - STATIONARY INTERNAL COMBUSTION ENGINES
	ADEM 108 - LOADING, STORAGE & DISPENSING LIQUID & GASEOUS ORGANIC COMPOUNDS
	ADEM 109 - VOLATILE ORGANIC COMPOUND SURFACE COATING EMISSION SOURCES
	ADEM 110 - AIR POLLUTION CONTROL DEVICE
	ADEM 112 - SOLVENT METAL CLEANING
	ADEM 438 - CONTINUOUS EMISSION MONITORS
	ADEM 437 - COMPLIANCE SCHEDULE
9.	General nature of business: (describe and list appropriate standard industrial classification (SIC) and North American Industry Classification System (NAICS) (<u>www.naics.com</u>) code(s)):
	Soybean processing and soybean oil refining SIC 2075, NAISC 311224
	Edible oils blending and packaging Sic 2079, NAICS 311225

10. For those making application for a synthetic minor or major source operating permit, please summarize each pollutant emitted and the emission rate for the pollutant. Indicate those pollutants for which the facility is major.

an a sur

*Potential emissions are either the maximum allowed by the regulations or by permit, or, if there is no regulatory limit, it is the emissions that occur from continuous operation at maximum capacity.

11. For those applying for a major source operating permit, indicate the compliance status by program for each emission unit or source and the method used to determine compliance. Also cite the specific applicable requirement.

Emission unit or source: _______(description)

Emission	Pollutant ⁴ Standard		01		Complian	ce Status
Point No.	Pollutant	Standard	Program ¹	Method used to determine compliance	IN ²	OUT ³
·····			L			
		· · · · · · · · · · · · · · · · · · ·				
	·····					
	a na na mana an an Anna an an Anna Anna					

²Attach compliance plan

³Attach compliance schedule (ADEM Form-437)

⁴Fugitive emissions must be included as separate entries

¹PSD, non-attainment NSR, NSPS, NESHAP (40 CFR Part 61), NESHAP (40 CFR Part 63), accidental release (112(r)),SIP regulation, Title IV, Enhanced Monitoring, Title VI, Other (specify)

12. List all insignificant activities and the basis for listing them as such (i.e., less than the insignificant activity thresholds or on the list of insignificant activities). Attach any documentation needed, such as calculations. No unit subject to an NSPS, NESHAP or MACT standard can be listed as insignificant.

Insignificant Activity	Basis
500 Gallon Double Walled Diesel Fuel Tank	
	l

13. List and explain any exemptions from applicable requirements the facility is claiming:

a.None b. c. d. е. f. **g**. h. i.

14. List below other attachments that are a part of this application(all supporting engineering calculations must be appended):

a. Specifications Documents	
b. Emission Calculations	
C	
<u>d.</u>	
e	
<u>f.</u>	
_g	
<u>h.</u>	
i	

I CERTIFY UNDER PENALTY OF LAW THAT, BASED ON INFORMATION AND BELIEF FORMED AFTER REASONABLE INQUIRY, THE STATEMENTS AND INFORMATION CONTAINED IN THIS APPLICATION ARE TRUE, ACCURATE AND COMPLETE.

I ALSO CERTIFY THAT THE SOURCE WILL CONTINUE TO COMPLY WITH APPLICABLE REQUIREMENTS FOR WHICH IT IS IN COMPLIANCE, AND THAT THE SOURCE WILL, IN A TIMELY MANNER, MEET ALL APPLICABLE REQUIREMENTS THAT WILL BECOME EFFECTIVE DURING THE PERMIT TERM AND SUBMIT A DETAILED SCHEDULE, IF NEEDED FOR MEETING THE REQUIREMENTS.

Plant Manager 116 SIGNATURE OF RESPONSIBLE OFFICIAL TITLE

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT Instructions for **ADEM Form 107** Permit Application for Stationary Internal Combustion Engines

ltem	Description
1	Self explanatory
2	In addition to selecting the purpose of the application, you must provide (1) the date the facility plans to commence construction if the application is for the installation or modification of an engine, and/or (2) the date the engine was first installed at this location if the application is for an engine that is currently installed at the facility.
3A, 3B, & 3C	Self explanatory
3D	Provide the name or number used to identify this engine in facility records and by facility employees. Examples include: Generator No. 1; Mainline Unit No. 12; Compressor Engine No. 7, etc.
3E	Self explanatory. Please note, if the serial number is not known at the time the application is submitted, you should provide the serial number to the Air Division upon completion of installation of the engine.
4A	If the proposed engine is a new (unused) engine, you must provide the date the engine was ordered from the manufacturer. This date is needed to determine applicability under certain federal regulations. If the proposed engine is used, you may leave this field blank.
4B	Self explanatory. However, if the engine has been/will be ordered from a manufacturer, you may enter "Unknown" if the Date of Manufacture is not known or the engine has not been manufactured yet. You should provide the Date of Manufacture to the Air Division upon completion of installation of the engine.
4C	Provide the date the engine was modified or reconstructed as defined in Subpart A of either 40 CFR Part 60 or 63, as applicable.
4D	You must only provide this information if the application is for the installation of a used engine. Applicability under federal NSPS and NESHAP regulations is not affected by moving an engine from one location to another. To correctly determine applicability, it is important to know when an engine was first placed into service.
5	Self explanatory. For engines generating electricity, please also provide the maximum electrical output and specify the units, either in kilowatts (kWe) or megawatts (MWe).
6	Self explanatory
7A, 7B & 7C	For a reciprocating engine, please provide the engine power rating in both brake horsepower and mechanical kilowatts (1 bhp =0.746 kWm). If the engine drives an electrical generator do <u>not</u> use the electrical kilowatt rating for the generator as the rating for the engine. For a combustion turbine, you only need to provide the heat input (MMBtu/hr) unless the emission factors used to calculate the potential emission are based on brake horsepower (bhp). If so, you must also provide the brake horsepower of the turbine.
7D, 7E, 7F & 7G	Self explanatory
7H	Please note that the cylinder displacement is needed for an <u>individual</u> cylinder for applicability purposes. You should divide the total engine displacement by the number of cylinders. If the cylinder displacement (volume) is in units of cubic inches, it can be converted by dividing the number of cubic inches for one cyclinder by 61.02 (i.e. 1 liter=61.02 cubic inches).
8 thru 10	Self explanatory except UTM Coordinates, which means Universal Transverse Mercator Coordinates, for Alabama, N-S is between 3337.000km-3875.000km and E-W is between 362.000km-709.000km; Zone 16
11	Mark all federal regulations under which the engine is an AFFECTED SOURCE, regardless of whether the engine has any applicable emission standards or work/management practice requirements.
12 thru 14	Self explanatory
15	This area is for you to provide any information that you wish to provide to supplement this application. If the information is providing clarification for a specific Item in the form, please indicate which Item the information is clarifying or supplementing.

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT PERMIT APPLICATION FOR STATIONARY INTERNAL COMBUSTION ENGINES

		_									
Permit Number (ADEM Use Only)											
1. Facility Name: Bunge	North America, Inc.		Location: De	ecatur							
2. Purpose of Application	1:		1,44 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4								
 2. Purpose of Application: Nitial installation of a new engine (i.e. engine that has never been in service at any location) Initial installation of a used engine (i.e. an engine that has been in service at another location) Modification/Reconstruction of an engine currently installed at the facility Update information for an engine currently installed at the facility Title V Application Other, please describe: 											
3. Engine Identification					·						
	e: Clarke Fire Pump Engines 		B. Model Number: JU6	H-UFADX8 E. Serial Numb	C. Model Year: 2020 						
4. Engine Applicability I	Jates:		· · · · · · · · · · · · · · · · · · ·								
A. For a new engine, Da D. For a used engine, ap 5. Engine Function:	proximate date engine was	B. Date Manufactured: first placed into service at cal Generation (Maximum Research & Developmen	any location: NA	Pate Modified/R	econstructed: NA						
6. Engine Operation:	Emergency Only Limited Use (<100 hr/yr)	Non-emergency, pl A. Hours Per Day: D. Peak Season (if any):	ease provide typical ope B. Days Per W	-	e in Items A-D below: C. Weeks per Year:						
7. Engine Specifications A. Maximum Brake Hore	205	B. Maximum Engine Pov	wer (kW _m): 227.5	C. Maximum H	leat Input (MMBtu/hr):1.9						
D. Type: Simple C	ycle Turbine Combir	ed Cycle Turbine]Regenerative Cycle Tu	rbine 🔀 R	eciprocating Engine						
E. Piston Movement:	2-Stroke RICE ×4-S	troke RICE	Other:								
F. Air/Fuel Mix: 🗙 Ricl	Burn RICE Lean Burn R	CE Diffusion Flame	Turbine Lean Prem	ix Turbine]Other:						
G. Ignition Type: 🛛 S	park 🛛 Compression []N/A H. Cylir	nder Displacement (Lite	rs per cylinder):	6.8						
8. Fuel Information:	Fuel Type/Description	Sulfur Content (indicate % by weight OR	Fuel-bound Nitr ppm) (indicate % by w		Percent (%) of Gross Heat Input on Annual Basis						
Primary Fuel	Diesel Fuel	15 ppm									
Secondary/Backup											
9. Stack Parameters (if a	control device is installed	the information should	l be for the control dev	vice's stack exit	t):						
A. Height above grade (D. Base Elevation (feet): G. UTM Coordinate (E-V	feet): TBD B.	nside Diameter at Exit (fe Exhaust Gas Temperature H. UTM Coordinate (N-S)	et): 0.5 C	. Exhaust Gas Vo	olume (ACFM): 1400 ports available? C Yes C No						

Pollutant		trolled ¹ mission Rate		rolled ^{1,2} Emission Rate	Basis for Potential Emissions Calculation/Estimate	; Comment (Optional)		
	lb/hr	ton/yr	lb/hr	ton/yr	(e.g. AP-42, Manufacturer Data)			
NOx	see	attached						
со	emission	calcs						
VOC								
РМ								
SO ₂								
Formaldehyde								
Total HAP								
			<u> </u>					
	tions (Mark all		Combustion	Turbines 🔀	40 CFR 63, Subpart ZZZZ, NESHAP	for Stationary RICE		
	ations (Mark all t YYYY, NESHAP t GG, NSPS for St	that apply): for Stationary C tationary Gas Tu	urbines	bines	40 CFR 63, Subpart ZZZZ, NESHAP 40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther:	ationary Compression Ignition		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other:	t YYYY, NESHAP t GG, NSPS for St t KKKK, NSPS for	that apply): for Stationary C tationary Gas Tu Stationary Cor	urbines nbustion Tur	bines	40 CFR 60, Subpart IIII, NSPS for St 40 CFR 60, Subpart JJJJ, NSPS for S	ationary Compression Ignition		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa	t YYYY, NESHAP t GG, NSPS for St t KKKK, NSPS for	that apply): for Stationary C tationary Gas Tu Stationary Cor is, and Require	urbines mbustion Tur ments:	bines	40 CFR 60, Subpart IIII, NSPS for St 40 CFR 60, Subpart JJJJ, NSPS for S	ationary Compression Ignition tationary Spark Ignition ICE		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa	t YYYY, NESHAP t GG, NSPS for St t KKKK, NSPS for ards, Limitation	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor is, and Require Rate/	urbines mbustion Tur ments:	bines 2	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther:	ationary Compression Ignition tationary Spark Ignition ICE 		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa	t YYYY, NESHAP t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation ht/Parameter	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor is, and Require Rate/	urbines nbustion Tur ements: Value U	bines 2	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: Regulatory Basis ³	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard)		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C	t YYYY, NESHAP t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation ht/Parameter	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor s, and Require Rate/ 6. 6.0	urbines nbustion Tur ements: Value U	rbines	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Other: Regulatory Basis ³ NSPS, Subpart IIII	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C	tions (Mark all t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation nt/Parameter WMHC	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor s, and Require Rate/ 6. 6.0 4.	urbines mbustion Tur ements: Value U: .4	bines 2 bines 2 nits of Standard g/kW-hr hr/yr	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: egulatory Standa Pollutar Example: NOx + N Example: Annual C	ations (Mark all f t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation nt/Parameter WMHC Operation K+NMHC	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor is, and Require Rate/ 6,6 6,0 4, 3,	urbines mbustion Tur ements: Value U .4 .0	bines 2 bines 2 nits of Standard <i>g/kW-hr</i> <i>hr/yr</i> g/kW-hr	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA 3.42		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C	tions (Mark all f t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation nt/Parameter WHHC Operation k+NMHC CO	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor is, and Require Rate/ 6,6 6,0 4, 3,	urbines mbustion Tur ements: Value Ur .4 .000 .0	rbines 2 rbines 2 mits of Standard g/kW-hr hr/yr g/kW-hr g/kW-hr	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA 3.42 0.6		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C	tions (Mark all f t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation nt/Parameter WHHC Operation k+NMHC CO	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor is, and Require Rate/ 6,6 6,0 4, 3,	urbines mbustion Tur ements: Value Ur .4 .000 .0	rbines 2 rbines 2 mits of Standard g/kW-hr hr/yr g/kW-hr g/kW-hr	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA 3.42 0.6		
40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C NO>	ations (Mark all f t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation at/Parameter WHIC Operation K+NMHC CO PM	that apply): for Stationary Gas Tu Stationary Gas Tu Stationary Cor as, and Require Rate/ 6. 6.0 4. 3. 0.	urbines mbustion Tur ements: Value Ur .4 .0 .0 .5 .2	bines 2 bines 2 nits of Standard <i>g/kW-hr</i> <i>g/kW-hr</i> <i>g/kW-hr</i> <i>g/kW-hr</i>	40 CFR 60, Subpart IIII, NSPS for St. 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA 3.42 0.6 0.10		
40 CFR 63, Subpar 40 CFR 60, Subpar 40 CFR 60, Subpar Other: Regulatory Standa Pollutar Example: NOx + N Example: Annual C NO>	ations (Mark all t YYYY, NESHAP t GG, NSPS for St rt KKKK, NSPS for ards, Limitation nt/Parameter WHC Operation k+NMHC CO PM	that apply): for Stationary Gas Tu stationary Gas Tu Stationary Cor ss, and Require Rate/ 6. 6. 6.0 4. 3. 0. 5 or NESHAP is the	urbines mbustion Tur ements: Value Ur .4 .0 .0 .5 .2 .2 .2 .2	bines 2 bines 2 nits of Standard g/kW-hr g/kW-hr g/kW-hr g/kW-hr	40 CFR 60, Subpart IIII, NSPS for Sta 40 CFR 60, Subpart JJJJ, NSPS for S Dther: 	ationary Compression Ignition tationary Spark Ignition ICE Engine Potential Emission Ra (in units of standard) 4.95 g/kW-hr NA 3.42 0.6 0.10 specify either SMS-PSD or SMS-Title		

13. Pollution Control Information:			
A. Device/Technology Type(s): B. Co	ntrol Efficiencies	s (Typical Operation)	C. Operational Parameters (if any):
X No Controls	Pollutant	% Reduction	
Air-to-Fuel Ratio Controller	NOx		
Water or Steam Injection	со		
Low NO _x Burners	VOC		
Oxidation Catalyst	Formaldehyde		
Selective Non-catalytic Reduction (SNCR)			
Non-selective Catalytic Reduction (NSCR/3-way Catalyst)			
Selective Catalytic Reduction (SCR)		· · · · · · · · · · · · · · · · · · ·	
Other:			
Other:			
Other:	L	<u></u>	[]
14. Compliance Status:			
Is this engine in compliance with all applicable air pollution rules a	nd regulations?	● Yes ● No (If "N	No", must attach ADEM Form 437)
15. Clarifying/Supplemental Information (Optional):			
Please see attached engine specification sheet for more information.	<u>.</u>		
Plaze provide the following	a for the parcon	proparing this applie	ation
Please provide the following			alion.
Name (Print or Type):Christa Andrew	Compa	ny/Affiliation:Bunge No	rth America, Inc.
Signature: Christa Andrew			Date:4/11/2019

ADEM Form 107 08/16 m6

BUNGE NORTH AMERICA, INC. SOY PROCESSING DIVISION DECATUR, AL

Facility ID 712-0026

DIESEL FIRE PUMP EMISSIONS CALCULATIONS

Diesel Fire Pump Consumption mm BTU/hr Avg. hours / year	305 bhp 14.6 gal / hr 1.898 100	130000 Btu/gal
	EF ¹	
	lb/hp-hr	Tons/yr
NO _X	0.031	0.47
CO	0.00668	0.10
SO _X	0.00205	0.03
PM10	0.0022	0.03
TOC	0.00247	0.04

1. AP-42, Section 3.3, Table 3.3-1. This provides a more conservative emission estimate than the spec sheet provided

FIRE PUMP ENGINES

JU6H-UFADMG JU6H-UFAD58 JU6H-UFADNG JU6H-UFADN0 JU6H-UFADP0 JU6H-UFADP8 JU6H-UFADQ0 JU6H-UFAD88 JU6H-UFADR0 JU6H-UFADR8 JU6H-UFADS8 JU6H-UFADS0 MODELS JU6H-UFADT0 JU6H-UFADW8 JU6H-UFADX8 JU6H-UFAD98

FM-UL-cUL APPROVED RATINGS BHP/KW										
JU6H MODEL	1760	R	RATED SPEED 2100 2350				0	US-EPA (NSPS) Available Until		
UFADMG		175	131	175	131		/	No Expiration		
UFAD58	183 137			Shinks.			/	No Expiration		
UFADNG	190 142	181	135	183	137	183 /	137	No Expiration		
UFADN0	197 147	197	147	200	149	200	149	No Expiration		
UFADP0		209	156	211	157	/211	157	No Expiration		
UFADP8	220 164				/			No Expiration		
UFADQ0	Sector States	224	167	226	169	226	169	No Expiration		
UFAD88	237 177	. Safety		/	/	Statistics.		No Expiration		
UFADR0		238	177.5	240	179	240	179	No Expiration		
UFADR8	250 187			/	/			No Expiration		
UFADS8	260 194		/		/			No Expiration		
UFADS0		260	194	268	200	268	200	No Expiration		
UFADT0	Constant of the	274	204	275	205	275	205	No Expiration		
UFADW8	282 211	/		10.27	1.150.00	/		No Expiration		
UFADX8	305 227.	5		1.5	1.4.1.1.2.1		1	No Expiration		
UFAD98	315 235	; /			A. C. S.		1	No Expiration		

Picture represents JU6H-TRWA Power Tech Plus Engine Series

 USA EPA (NSPS) Tier 3 Emissions Certified Off-Road (40 CFR Part 89) and NSPS Stationary (40 CFR Part 60 Sub Part III). Meet EU Stage IIIA emission levels.

All Models available for Export

SPECIFICATIONS

	JU6H MODELS															
ITEM	MG	58	NG	N0	P8	88	P0	Q0	R0	S0	TO	R8	S8	W8	X8	98
Number of Cylinders		6										11				
Aspiration		TRWA														
Rotation*		CW									121					
Overall Dimensions – in. (mm)	-59.8															
Crankshaft Centerline Height – in. (mm)								14 (356)					- 19 <u>-</u>	New St	
Weight – Ib (kg)			Alger 1					1747	(791)			N IN T				104
Compression Ratio			_19	.0:1							17	.0:1	Angel			
Displacement – cu. in. (L)								415	(6.8)							
Engine Type					1000		4 Stroke	Cycle – lı	nline Cor	structio	n					
Bore & Stroke – in. (mm)			the first			Rent T	4	19 x 5.00	(106 x 12	27)	The second			15.0055		L. ar
Installation Drawing		D628														
Wiring Diagram AC			10.5			R. W.		C07	651							
Wiring Diagram DC		_C071	367, C07	2146, CO	71361				WTAN	C071	368, C07	2146, C0	71761	Sec. Sec. 1		
Engine Series	_John Deere 6068 Series Power Tech E_ John Deere 6068 Series Power Tech Plus									Sec. 25						
Speed Interpolation			and the all					N	IA							here (

Abbreviations: CW - Clockwise TRWA - Turbocharged with Raw Water Aftercooling N/A - Not Available L - Length W - Width H - Height

*Rotation viewed from Heat Exchanger / Front of engine

CERTIFIED POWER RATING

- · Each engine is factory tested to verify power and performance.
- \bullet FM-UL power ratings are shown at specific speeds, Clarke engines can be applied at a single rated RPM setting \pm 50 RPM.

ENGINE RATINGS BASELINES

- Engines are to be used for stationary emergency standby fire pump service only. Engines are to be tested in accordance with NFPA 25.
- Engines are rated at standard SAE conditions of 29.61 in. (752.1 mm) Hg barometer and 77°F (25°C) inlet air temperature [approximates 300 ft. (91.4 m) above sea level] by the testing laboratory (see SAE Standard J 1349).
- A deduction of 3 percent from engine horsepower rating at standard SAE conditions shall be made for diesel engines for each 1000 ft. (305 m) altitude above 300 ft. (91.4 m)
- A deduction of 1 percent from engine horsepower rating as corrected to standard SAE conditions shall be made for diesel engines for every 10°F (5.6°C) above 77°F (25°C) ambient temperature.

Page 1 of 9

CLARKE	®
FIRE PUMP ENGINES	

JU6H-UFADMG JU6H-UFAD58 JU6H-UFADNG JU6H-UFADN0 JU6H-UFADP0 JU6H-UFADP8 JU6H-UFADQ0 JU6H-UFAD88 JU6H-UFADR0 JU6H-UFADR8 JU6H-UFADS8 JU6H-UFADS0 MODELS JU6H-UFADT0 JU6H-UFADW8 JU6H-UFADX8 JU6H-UFAD98

ENGINE EQUIPMENT

EQUIPMENT	STANDARD	OPTIONAL
Air Cleaner	Direct Mounted, Washable, Indoor Service with Drip Shield	Disposable, Drip Proof, Indoor Service Outdoor Type, Single or Two Stage (Cyclonic)
Alarms	Overspeed Alarm & Shutdown, Low Oil Pressure, Low & High Coolant Temperature, Low Raw Water Flow, High Raw Water Temperature, Alternate ECM Warning, Fuel Injection Malfunction, ECM Warning and Failure with Automatic Switching	Low Coolant Level, Low Oil Level, Oil Filter Differential Pressure, Fuel Filter Differential Pressure, Air Filter Restriction
Alternator	12V-DC, 42 Amps with Poly-Vee Belt and Guard	24V-DO 40 Amps with Poly-Vee Belt and Guard
Coupling	Bare Flywheel	UL Listed Driveshaft and Guard, JU6H- UFAD58/NG/ADMG/ADM8/K0/N0/Q0/R0-CDS30-S1; JU6H- UFADP8/P0/T0/88/R8/S8/S0/W8/X8/98- CDS50-SC at 1760/2100 RPM only
Electronic Control Module	12V-DC, Energized to Stop, Primary ECM always Powered on	24V-DC, Energized to Stop, Primary ECM always Powered on
Engine Heater	115V-AC, 1360 Watt	230V-AC, 1360 Watt
Exhaust Flex Connection	SS Flex, 150# ANSI Flanged Connection, 5" for JU6H- UFAD58/MG/NG/N0/P8/88; SS Flex, 150# ANSI Flanged Connection, 6" for JU6H-	SS Flex, 150# ANSI Flanged Connection, 6" for JU6H- UFAD58/MG/NG/N9/P8/88; SS Flex, 150# ANSI Flanged Connection, 8" for JU6H-
Constant and and	UFADP0/Q0/R0/S0/T0/R8/S8/W8/X8/98 (w/ orifice plate)	UFADP0/Q0/R0/S0/T0(R8/S8/W8/X8/98 (w/ orifice plate)
Exhaust Protection	Metal Guards on Manifolds and Turbocharger	
Flywheel Housing	SAE #3	
Flywheel Power Take Off	11.5" SAE Industrial Flywheel Connection	
Fuel Connections	Fire Resistant, Flexible, USA Coast Guard Approved, Supply and Return Lines	SS, Braided, cUL Listed, Supply and Return Lines
Fuel Filter	Primary Filter with Priming Pump	
Fuel Injection System	High Pressure Common Rail	\wedge
Governor, Speed	Dual Electronic Control Modules	
Heat Exchanger	Tube and Shell Type, 60 PSI (4 BAR), NPT(F) Connections – Sea Water Compatible	
Instrument Panel	Multimeter to Display English and Metric, Tachometer, Hourmeter, Water Temperature, Oil Pressure and One (1) Voltmeter with Toggle Switch, Front Opening	
Junction Box	Integral with Instrument Panel; For DC Wiring Interconnection to Engine Controller	
Lube Oil Cooler	Engine Water Cooled, Plate Type	
Lube Oil Filter	Full Flow with By-Pass Valve	
Lube Oil Pump	Gear Driven, Gear Type	
Manual Start Control	On Instrument Panel with Control Position Warning Light	
Overspeed Control	Electronic, Factory Set, Not Field Adjustable	
Raw Water Cooling Loop w/Alarms	Galvanized	Seawater, All 316SS, High Pressure
Raw Water Cooling Loop Solenoid Operation	Automatic from Fire Pump Controller and from Engine Instrument Panel (for Horizontal Fire Pump Applications)	Not Supplied (for Vertical Turbine Fire Pump Applications)
Run – Stop Control	On Instrument Panel with Control Position Warning Light	
Starters	Two (2) 12V-DC	Two (2) 24V-DC
Throttle Control	Adjustable Speed Control by Increase/Decrease Button, Tamper Proof in Instrument Panel	
Water Pump	Centrifugal Type, Poly-Vee Belt Drive with Guard	

Abbreviations: DC – Direct Current, AC – Alternating Current, SAE – Society of Automotive Engineers, NPT(F) – National Pipe Tapered Thread (Female), ANSI – American National Standards Institute, SS – Stainless Steel

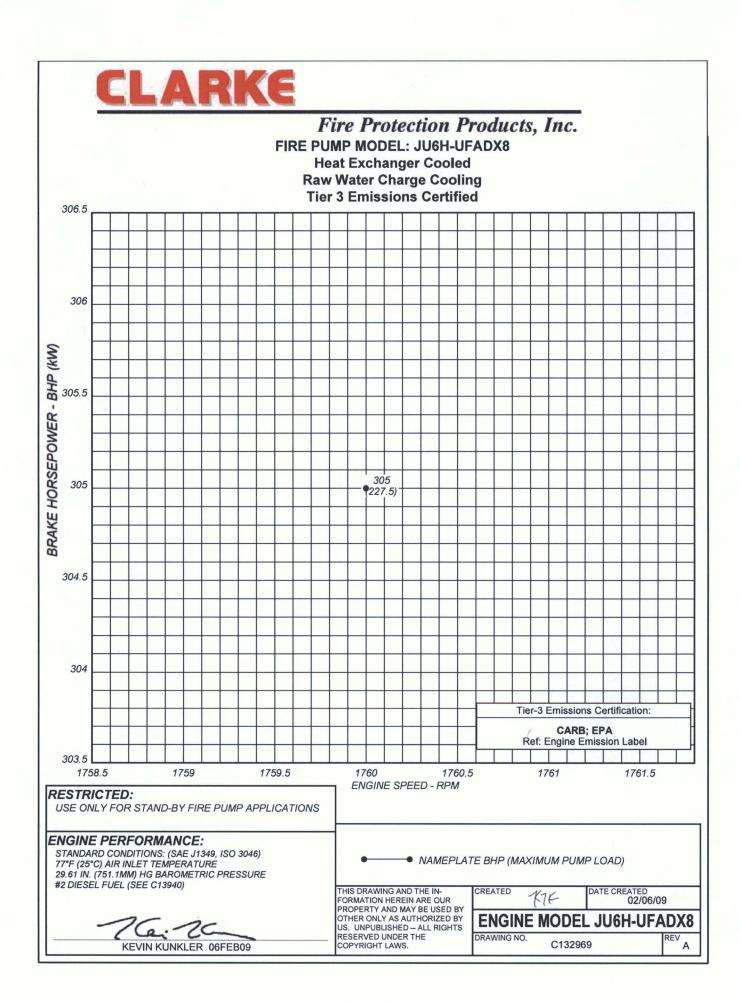
CLARKE Fire Protection Products, Inc. 100 Progress Place, Cincinnati, Ohio 45246 United States of America Tel +1-513-475-FIRE(3473) Fax +1-513-771-8930 www.clarkefire.com CLARKE UK, Ltd. Grange Works, Lomond Rd., Coatbridge, ML5-2NN United Kingdom Tel +44-1236-429946 Fax +44-1236-427274 www.clarkefire.com

John Deere Base Engine

Heat Exchanger Cooled

350 Series -

6 Cylinders


Power Curve Number

EPA Tier 3 Certified

-Built in USA

FM Approved

C133421 revR 19JUN15 Specifications and information contained in this brochure subject to change without notice.

CLARKE

Fire Protection Products, Inc.

JU6H-UFADX8 **INSTALLATION & OPERATION DATA (I&O Data) USA Produced**

Basic Engine Description

Basic Engine Description				
Engine Manufacturer				
Ignition Type	Compression	(Diesel)		
Number of Cylinders	6			
Bore and Stroke - in (mm)	_ 4.19 (106) X 5	i (127)		
Displacement - in ³ (L)	_ 415 (6.8)			
Compression Ratio				
Valves per cylinder				
Intake	_ 2			
Exhaust	2			
Combustion System	Direct Injectio	n		
Engine Type	In-Line, 4 Stro	ke Cycle		
Fuel Management Control	Electronic, Hig	gh Pressure Common R	ail	
Firing Order (CW Rotation)				
Aspiration	_ Turbocharged			
Charge Air Cooling Type	Raw Water			
Rotation, viewed from front of engine, Clockwise (CW)				
Engine Crankcase Vent System	Open			
Installation Drawing				
Weight - lb (kg)	_ 1747 (792)			
Power Rating	<u>1760</u>			
Nameplate Power - HP (kW) ^[1]	_ 305 (227.5)		
Cooling System - [C051386]	<u>1760</u>			
Engine Coolant Heat - Btu/sec (kW)				
Engine Radiated Heat - Btu/sec (kW)	_ 20.5 (21.6))		
Heat Exchanger Minimum Flow 60°F (15°C) Raw H₂0 - gal/min (L/min)	28 (106)			
100°F (37°C) Raw H ₂ 0 - gal/min (L/min)	_ 38 (144)			
Heat Exchanger Maximum Cooling Raw Water				
Inlet Pressure - psi (bar)	_ 60 (4.1)			
Flow - gal/min (L/min)	_ 40 (151)			
Typical Engine H ₂ 0 Operating Temp - °F (°C)	_ 180 (82.2) - 1	95 (90.6)		
Thermostat				
Start to Open - °F (°C)	_ 180 (82.2)			
Fully Opened - °F (°C)	_ 203 (95)			
Engine Coolant Capacity - qt (L)				
Coolant Pressure Cap - Ib/in² (kPa)				
Maximum Engine Coolant Temperature - °F (°C)	_ 230 (110)			
Minimum Engine Coolant Temperature - °F (°C)	_ 160 (71.1)			
High Coolant Temp Alarm Switch - °F (°C)	_ 235 (113) - 24	1 (116)		
Electric System DC	Standard		Ontional	
Electric System - DC System Voltage (Nominal)	<u>Standard</u> _ 12		Optional 24	1
Battery Capacity for Ambients Above 32°F (0°C)	_ 12		24	
Voltage (Nominal)	_ 12	{C07633}	24	{C07633}
Qty. Per Battery Bank			2	
SAE size per J537			8D \	
CCA @ 0°F (-18°C)	_ 1400		1400	
Reserve Capacity - Minutes			430	\sim
Battery Cable Circuit, Max Resistance - ohm	0.0012		0.0012	\sim
Battery Cable Minimum Size	~~		AC	\mathcal{L}
0-120 in, Circuit Length ^[2]			00	N N
121-160 in. Circuit Length ^[2]			000	1
161-200 in. Circuit Length ^[2]			000Ø	
Charging Alternator Maximum Output - Amp,		{C071363}	55	{C071365}
Starter Cranking Amps, Rolling - @60°F (15°C)	_ 440	{RE69704/RE70404}	/250	{C07819/C07820}

NOTE: This engine is intended for indoor installation or in a weatherproof enclosure. ¹Derate 3% per every 1000 ft. [304.8 m] above 300 ft. [91.4 m] and derate 1% for every 10 °F [5.55 °C] above 77° [25°C]. ²Positive and Negative Cables Combined Length.

Page 1 of 2

Fire Protection Products, Inc. JU6H-UFADX8 INSTALLATION & OPERATION DATA (I&O Data) USA Produced

Exhaust System (Single Exhaust Outlet)	<u>1760</u>	
Exhaust Flow - ft. ³ /min (m ³ /min)		
Exhaust Temperature - °F (°C)		
Maximum Allowable Back Pressure - in H ₂ 0 (kPa)		
Minimum Exhaust Pipe Dia in (mm) ^[3]	6 (152)	
Fuel System	<u>1760</u>	
Fuel Consumption - gal/hr (L/hr)	14.6 (55.3)	
Fuel Return - gal/hr (L/hr)	21.3 (80.6)	
Fuel Supply - gal/hr (L/hr)	35.9 (136)	
Fuel Pressure - Ib/in² (kPa)		
Minimum Line Size - Supply - in.	50 Schedule 40 Steel Pipe	
Pipe Outer Diameter - in (mm)	0.848 (21.5)	
Minimum Line Size - Return - in.		e
Pipe Outer Diameter - in (mm)		
Maximum Allowable Fuel Pump Suction Lift with clean Filter - in H ₂ 0 (mH ₂ 0)		
Maximum Allowable Fuel Head above Fuel pump, Supply or Return - ft		
Fuel Filter Micron Size		
Hantan Duntan	Ctondord	
Heater System	<u>Standard</u>	Optional
Engine Coolant Heater	1000	
Wattage (Nominal)		1360
Voltage - AC, 1 Phase		230 (+5%, -10%)
Part Number	{C123640}	{C123644}
Air System	1760	$\langle \rangle$
Combustion Air Flow - ft. ³ /min (m ³ /min)	525 (14.9)	$\langle \rangle$
Air Cleaner	Standard	\ Optional
Part Number		{C03327}
Туре	. ,	Canister,
·//	with Shield	Single-Stage
Cleaning method		Disposable
Air Intake Restriction Maximum Limit		
Dirty Air Cleaner - in H ₂ 0 (kPa)	14 (3.5)	14 (3,5)
Clean Air Cleaner - in H_20 (kPa)		5 (1(2)
Maximum Allowable Temperature (Air To Engine Inlet) - °F (°C)*>		- 77
Lubrication System		/
Oil Pressure - normal - Ib/in ² (kPa)		/ / /
Low Oil Pressure Alarm Switch - Ib/in ² (kPa)		$\langle \cdot \cdot \rangle$
In Pan Oil Temperature - °F (°C)		/
Total Oil Capacity with Filter - qt (L)	34.3 (32.5)	/
Lube Oil Heater	Optional	Optional
Wattage (Nominal)	150	/ 150 \
Voltage		/ 240V (+5%, -10%) ∖
Part Number	C04430	C04431
Performance	<u>1760</u>	Υ.
BMEP - Ib/in² (kPa)		
Piston Speed - ft/min (m/min)		
Mechanical Noise - dB(A) @ 1m		
Power Curve		

³Minimum Exhaust Pipe Diameter is based on: 15 feet of pipe, one 90° elbow, and one Industrial silencer. A Back-pressure flow analysis must be performed on the actual field installed exhaust system to assure engine maximum allowable back pressure is not exceeded. See Exhaust Sizing Calculator on www.clarkefire.com.

{ } indicates component reference part number.

Page 2 of 2 C133102 Rev K DSP 170CT16

JU4H, JU4R & JU6H, JU6R ENGINE MODELS ENGINE MATERIALS AND CONSTRUCTION

ł

<u>Air Cleaner</u>	
Туре	Indoor Usage Only
Material	Oiled Fabric Pleats
watenal	Aluminum Mesh
	Alumnum Mesh
Air Cleaner - Optional	
Туре	Canister
Material	
Housing	
-	
<u>Camshaft</u>	
Material	
	Chill Hardened
Location	
Drive	
Type of Cam	Ground
Charge Air Cooler (JU6H-	50.62.68.74.84. ADK0.
AD58, ADNG, ADNO, ADQ	
	ADR8, AD98, ADS0, ADW8,
ADX8, AD98 only)	
Туре	Raw Water Cooled
Materials (in contact with ra	w water)
Tubes	
Headers	
	83600 Red Brass
Plumbing	316 Stainless Steel/ Brass
	90/10 Silicone
Charge Air Cooler (JU6R-	AA67 59 61 DE O7 DE
S9, 83 only)	
Type	
	Air to Air Cooled
Materials	
<u>Materials</u> Core	Aluminum
<u>Materials</u> Core <u>Coolant Pump</u> Type	Aluminum Centrifugal
<u>Materials</u> Core	Aluminum Centrifugal
Materials Core Coolant Pump Type Drive	Aluminum Centrifugal
Materials Core <u>Coolant Pump</u> Type Drive <u>Coolant Thermostat</u>	Aluminum Centrifugal Poly Vee Belt
Materials Core	Aluminum Centrifugal Poly Vee Belt .Non Blocking
Materials Core <u>Coolant Pump</u> Type Drive <u>Coolant Thermostat</u>	Aluminum Centrifugal Poly Vee Belt .Non Blocking
Materials Core Type Drive Coolant Thermostat Type Qty	Aluminum Centrifugal Poly Vee Belt Non Blocking 1
Materials Core. Core. Type. Drive. Coolant Thermostat Type. Qty. Cooling Loop (Galvanized	Aluminum Centrifugal Poly Vee Belt . Non Blocking . 1
Materials Core Coolant Pump Type Drive Coolant Thermostat Type Cty. Cooling Loop (Galvanized Tees, Elbows, Pipe	Aluminum Centrifugal . Poly Vee Belt . Non Blocking . 1 J Galvanized Steel
Materials Core. Core. Type. Drive. Coolant Thermostat Type. Qty. Cooling Loop (Galvanized	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 3 Galvanized Steel Brass ASTM B 124,
Materials Core. Core. Type. Drive. Coolant Thermostat Type. Qty. Cooling Loop (Galvanized) Tees, Elbows, Pipe. Ball Valves.	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass
Materials Core Colant Pump Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or
Materials Core Colant Pump Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 J Galvanized Steel Brass ASTM B 124, Brass Bronze
Materials Core Colant Pump Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or
Materials Core	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops)
Materials Core. Core. Type. Type. Drive. Coolant Thermostat Type. Qty. Qtop. Galvanized Tees, Elbows, Pipe. Ball Valves. Solenoid Valve. Pressure Regulator. Strainer.	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops)
Materials Core Colant Pump Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Eronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops)
Materials Core Core Type Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Sclenoid Valve Pressure Regulator Strainer Cooling Loop (Sea Water) Tees, Elbows, Pipe Ball Valves	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel
Materials Core Core Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel
Materials Core Core Type Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Sclenoid Valve Pressure Regulator Strainer Cooling Loop (Sea Water) Tees, Elbows, Pipe Ball Valves	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel Cast Brass ASTM B176
Materials Core Core Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel
Materials Core Colant Pump Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer Ball Valves Solenoid Valve Pressure Regulator/Straine Solenoid Valve Pressure Regulator/Straine Cooling Loop (316SS)	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Eronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel 317 Stainless Steel 318 Stainless Steel 318 Stainless Steel 319 Stainless Steel 310 Stainless Steel 310 Stainless Steel 311 Stainless Steel 312 Stainless Steel 313 Stainless Steel 314 Stainless Steel 315 Stainless Steel 316 Stainless Steel 316 Stainless Steel 317 Stainless Steel 318 Stainless Steel 318 Stainless Steel 319 Stainless Steel 310 Steel 310 Stainless Steel 310 Steel 310 Steel 310 Steel 310 Steel 310 Steel 310 Steel 310 Steel 310 Ste
Materials Core Core Type Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer Solenoid Valve Pressure Regulator/Straine Solenoid Valve Pressure Regulator/Straine Cooling Loop (316SS) Tees, Elbows, Pipe	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel 316 Stainless Steel Cast Brass ASTM B176 C87800 316 Stainless Steel
Materials Core Core Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer Ball Valves, Pipe	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Bronze Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel
Materials Core Core Type Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer Ball Valves Solenoid Valve Pressure Regulator/Straine Solenoid Valve Pressure Regulator/Straine Solenoid Valve Solenoid Valve	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel
Materials Core Core Type Drive Coolant Thermostat Type Qty Cooling Loop (Galvanized Tees, Elbows, Pipe Ball Valves Solenoid Valve Pressure Regulator Strainer Ball Valves, Pipe	Aluminum Centrifugal Poly Vee Belt Non Blocking 1 Galvanized Steel Brass ASTM B 124, Brass Cast Iron (1/2" - 1" loops) or Bronze (1.25" - 2" loops) 316 Stainless Steel 316 Stainless Steel

Connecting Rod

Туре	. I-Beam Taper
Material	Forged Steel Allov

Crank Pin Bearings

Туре	. Precision Half Shell
Number	.1 Pair Per Cylinder
Material	Wear-Guard

<u>Crankshaft</u>

Material.....Forged Steel Type of Balance.....Dynamic

Cylinder Block

CYNNUEL DIOCK	
Туре	One Piece with
	Non-Siamese Cylinders
Material	Annealed Gray Iron

<u>Cylinder Head</u> Type......Slab 2 Valve Material.....Annealed Gray Iron Cylinder Liners Type...... Centrifugal Cast, Wet Liner Material...... Alloy Iron Plateau, Honed Fuel Pump Type......Diaphragm Drive......Cam Lobe

Tube & Headers.....Copper Shell.....Copper Electrode.....Zinc

Materials	
Tube & Headers	Copper
Shell	Aluminum

Injection Pump

Туре	Rotary
Drive	Gear

Lubrication Cooler Type.....Plate

Drive......Gear

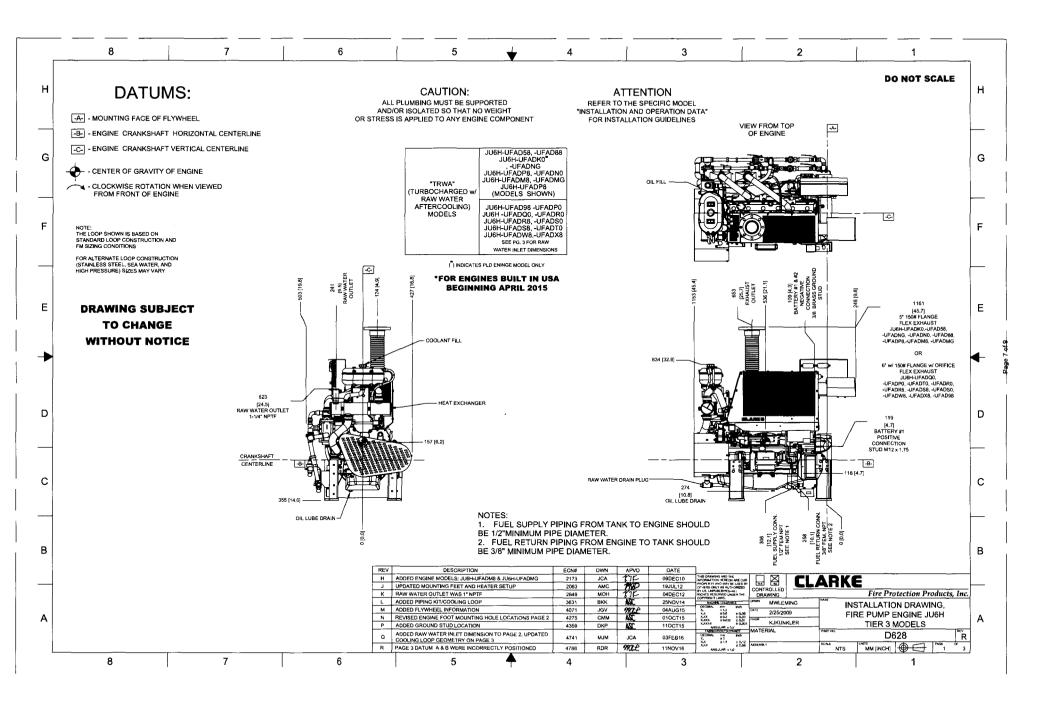
Main Bearings	
Туре	. Precision Half Shells
Material	Steel Backed-Aluminum
	Lined

<u>Piston</u>

Type and Material	. Aluminum Alloy with
	Reinforced Top Ring Groove
Cooling	. Oil Jet Spray

Piston Pin Type...... Full Floating - Offset

Piston Rings


Number/Piston	3
Тор	Keystone Barrel Faced -
	Plasma Coated
Second	Tapered Cast Iron
Third	Double Rail Type
	w/Expander Spring

Radiator - JU4R & JU6R Only Type Plate Fin

Materials	
Core	
Tank & Structure	Steel

Valves

valves	
Туре	Poppet
Arrangement	Overhead Valve
Number/Cylinder	1 intake
	1 exhaust
Operating Mechanism	Mechanical Rocker Arm
Type of Lifter	Large Head
Valve Seat Insert	Replaceable

Rating Specific Emissions Data

Nameplate Rating Information

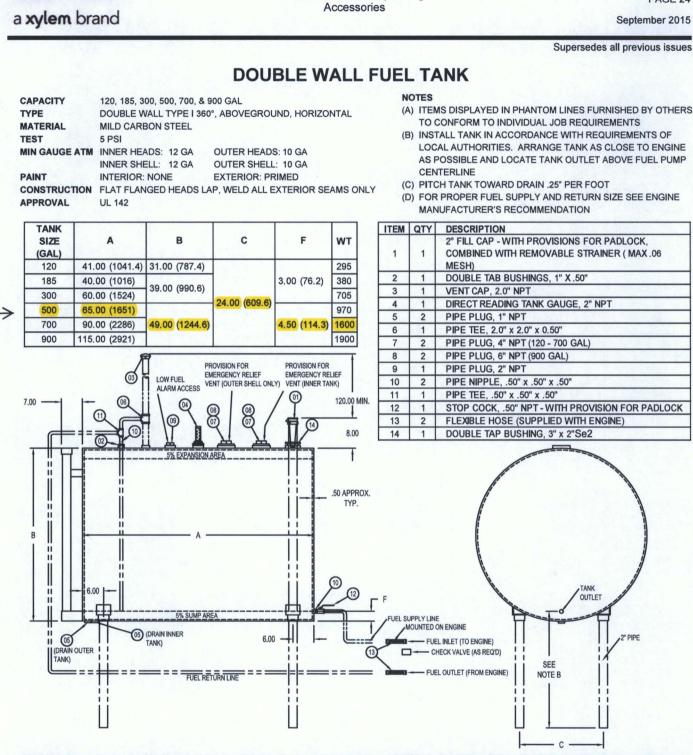
Clarke Model	JU6H-UFADX8	
Power Rating (BHP/kW)	305/227.5	
Certified Speed (RPM)	1760	

Refer to Rating Data section on page 2 for emissions output values

Rating Specific Emissions Data - John Deere Power Systems

Rating Data

Rating	6068HFC48A	
Certified Power(kW)	235	
Rated Speed	1760	
Vehicle Model Number	OEM (Clarke Fire Pump-	
Units	g/kW-hr	g/hp-hr
NOx	3.61	2.69
НС	0.08	0.06
NOx + HC	N/A	N/A
Pm	0.07	0.06
со	0.6	0.4


Certificate Data

Engine Model Year	2017	
EPA Family Name	HJDXL13.5103	
EPA JD Name	650HAA	
EPA Certificate Number	HJDXL13.5103-011	
CARB Executive Order		
Parent of Family	6135HF485A	
Units	g/kW-hr	
NOx	3.31	
НС	0.11	
NOx + HC	N/A	
Pm	0.10	
СО	0.6	

* The emission data listed is measured from a laboratory test engine according to the test procedures of 40 CFR 89 or 40 CFR 1039, as applicable. The test engine is intended to represent nominal production hardware, and we do not guarantee that every production engine will have identical test results. The family parent data represents multiple ratings and this data may have been collected at a different engine speed and load. Emission results may vary due to engine manufacturing tolerances, engine operating conditions, fuels used, or other conditions beyond our control.

This information is property of Deere & Company. It is provided solely for the purpose of obtaining certification or permits of Deere powered equipment. Unauthorized distribution of this information is prohibited.

Emissions Results by Rating run on Mar-07-2017

Refer to Spec 21 30 00 - 2.3

A-C FIRE PUMP SYSTEMS Dimensions - Fire Pump Fittings &

NOT FOR CONSTRUCTION, INSTALLATION OR APPLICATION PURPOSES UNLESS CERTIFIED CERTIFIED FOR:

CUSTOMER ORDER NO .:

TAG NO.

SHOP ORDER:

C FIRE

CERTIFIED BY:

DATE:

FP 2.7

PAGE 24

BUNGE NORTH AMERICA DECATUR, ALABAMA

BEST AVAILABLE CONTROL TECHNOLOGY (BACT) ANALYSIS For Emergency Diesel Fire Pump

PARTICULATE MATTER EMISSIONS (PM) Volatile Organic Compound (VOC) Emissions

May 2019

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	3
1.0	INTRODUCTION	3
2.0	PROJECT AND PROCESS DESCRIPTION	4
3.0	ESTIMATED EMISSIONS BASIS	5
4.0	ECONOMIC ANALYSIS ASSUMPTIONS	5
4.10	Cost Assumptions	5
4.2 (Cost of Compliance	5
4.30	Cost Effectiveness	6
5.0	CONTROL TECHNOLOGY FEASIBILITY	7
5.1	List of Control Options and Elimination of Technically Infeasible Options	7
5.1.1	I Control Technology Options	9
6.0	RANK REMAINING CONTROL TECHNIQUES BY EFFECTIVENESS	. 10
6.1 E	Emergency Fire Pump engine	. 10
7.0	CONCLUSIONS	. 11
Refer	ences	. 11
Table	9-5-1	8

EXECUTIVE SUMMARY

The proposed modification at the Bunge North America Decatur, Alabama facility will involve the modification of several emission units that have potential to emit particulate matter and volatile organic compound emissions. Particulate Matter (PM) and volatile organic compound (VOC) emissions from this project are subject to Prevention of Significant Deterioration (PSD) regulations, since the potential PM emissions will exceed 25 tons per year and a significant increase of VOCs will occur. Because the Soybean Processing Facility located in Decatur, Alabama will be subject to PSD regulations; an analysis of Best Available Control Technology (BACT) must be conducted. The sources of PM and VOC emissions addressed in this BACT Analysis consist of one combustion unit (emergency dieselfired fire pump). BACT analyses on other sources of PM and VOCs were previously performed.

The controlled emissions from new or operationally modified sources are:

Sources	PM10 (tpy)	VOC (tpy)	
Emergency Fire Pump	0.03	0.04	

The purpose of this BACT analysis is to determine a control technology for the PM and VOC emissions that would be considered BACT. As part of this effort, the technologies listed in Section 5, which are used to control particulate matter emissions from industrial process sources, were evaluated in terms of their technical feasibility in controlling emissions of particulate matter.

Based on the BACT analysis, the following are proposed as BACT for the following particulate matter (PM) sources:

Emissions Source	Proposed BACT
Emergency Fire Pumps	Use of an engine that is Tier 3 Emissions Certified and meets NSPS. Good combustion practices will be followed.

1.0 INTRODUCTION

The Clean Air Act (CAA) and regulations promulgated by the Alabama Department of Environmental Management (ADEM) require that major air pollution sources undergoing construction comply with all applicable Prevention of Significant Deterioration (PSD) provisions and Nonattainment area New Source Review Requirements. The Federal PSD rules apply to areas classified as attainment and new major stationary sources (sources with a potential to emit 250 tons/year or more of any criteria pollutant). The EPA regulations require that a major stationary source undergoing a major modification apply Best Available Control Technology (BACT) for each regulated PSD pollutant that it would have the potential

to emit in significant amounts. BACT need not necessarily result in an emissions control device. Rather, BACT is an emission limitation made on a case-by-case basis taking into consideration several projectspecific factors. In no case, however, is BACT allowed to be less stringent than the emissions limits established by an applicable New Source Performance Standards (NSPS).

The EPA has implemented the "top-down" method for determining BACT, which ADEM follows. In general, the top-down process requires that all available control technologies be ranked in descending order of emission control effectiveness. The following is a step-by-step description of a typical top-down BACT analysis.

- 1) Identify all control technologies;
- 2) Eliminate technically infeasible options;
- 3) Rank remaining control technologies by emission control effectiveness;
- 4) Evaluate most effective controls and document results; and,
- 5) Select BACT.

2.0 PROJECT AND PROCESS DESCRIPTION

Soybean oil processing typically consists of oilseed handling/elevator operations (receiving, storing, and cleaning the raw soybeans); preparing the soybeans for the solvent extraction and oil desolventizing, oil refining, and desolventizing and processing the spent soybean flakes.

Some support facilities are needed for this plant. They include boilers, cooling towers, emergency generator, and fire water pump engines.

The emission units that are going to be physically modified as part of this project were described in the previous BACT analyses. This unit was not included in that analysis:

• The addition of a new 305 hp fire pump engine.

3.0 ESTIMATED EMISSIONS BASIS

The estimated baseline and projected actual emissions are summarized in Tables 1-5 in Section 2 of the PSD Permit Application Project and Permitting Process document enclosed herewith. Emissions calculations are included in Appendix A of that document. Table 5 provides the projected increases from the proposed modifications and illustrate that the project triggers PSD review for particulate matter (PM) and volatile organic compounds (VOCs).

4.0 ECONOMIC ANALYSIS ASSUMPTIONS

A significant part of the BACT analysis deals with cost effectiveness and comparisons of the various technically feasible options. The following defines the approach that would be used if a cost effectiveness evaluation is required.

4.1 Cost Assumptions

- Capital and operating costs for new equipment are available from EPA (EPA-450/3-79-006)
- The prices for utilities will be based on site-specific data for electricity and natural gas.
- An interest rate of 8% with 15-year equipment life would be used.

4.2 Cost of Compliance

For the BACT analysis, capital costs of compliance are annualized.

- i. Total Annual Costs = Indirect Annual Costs + Operations & Maintenance Costs
- ii. Indirect Annual Costs = Capital Recovery Factor (CRF) x Total Installed Cost (TIC)

Where:

Capital Recovery Factor (CRF) =
$$\frac{i(1+i)^n}{((1+i)^n-1)}$$

Life of Equipment, n = 15 years ¹

Annual Interest Rate,
$$i = 8\%$$

Yielding:

CRF = 0.1098

Page 5

4.3 Cost Effectiveness

Cost effectiveness is used to assess the potential for emissions reduction in the most economical way. For BACT analyses, it is defined as dollars per ton of emissions removed (\$/ton).

The analysis evaluates capital, operating, and maintenance costs for the various control options. The cost effectiveness is used to evaluate which control options are economically feasible.

Annual Cost Effectiveness

Emissions removal is calculated for each technology or technique, and the \$/ton of emission removed would be calculated as:

Total Annualized Costs of Control Option
(Baseline Annual Emissions - Control Option Annual Emissions)

Based on assumed 15-year life for new equipment (EPA/452/B-02-001).

5.0 CONTROL TECHNOLOGY FEASIBILITY

The definition of BACT requires that emission controls for each emission source and each pollutant of concern be evaluated on a case-by-case basis, taking into consideration energy, environmental, and economic impacts and other costs. Only commercially available and field- proven technologies need to be investigated. If the control technology has been installed and operated successfully on the type of source under review, it is demonstrated and it is technically feasible (EPA, 1990). Options may also be eliminated when they have unacceptable energy, cost, or non-air quality environmental impacts. Options for only the sources physically modified will be reviewed.

5.1 List of Control Options and Elimination of Technically Infeasible Options

An initial list of potential technologies was developed using the following information sources:

- EPA RACT/BACT/LAER Clearinghouse (RBLC) database
- Manufacturer Specification Sheets
- Recently Issued permits for Soybean Processing Facilities

Based on a recent database query of permits issued up to July 2018, the following BACT determinations related to the listed source were identified and presented in Table 5.1 below:

Facility	Date	RBLC ID #	Emission Unit	BACT Requirements
Toyota	4/4/2019	TX-0846	Fire Pump	Control Method: None
			Diesel Engine	Emission Limit for PM10 –
				0.02 G/Kwhr; VOC – 0.19
				G/Kwhr.
				Meets EPA Tier 4
				requirements. NSPS IIII,
				MACT ZZZZ
CPV Three	2/19/2019	IL-0129	Firewater Pump	Control Method: None
Rivers, LLC			Engine – 422	Emission Limit for PM10 –
			Нр	0.02 G/Kwhr; VOC – 0.19
				G/Kwhr.
				Meets limits of the NSPS
				IIII, MACT ZZZZ are
				BACT
Shady Hills	3/19/2019	FL-0367	Firewater Pump	Control Method: None
Energy			Engine – 347 Hp	Emission Limit for PM10 –
Center, LLC				0.02 G/Kwhr; VOC – 0.19
				G/Kwhr.
				Meets limits of the NSPS
				IIII, MACT ZZZZ are
				BACT.
Marshall	2/19/2019	MI-0433	Fire Pump	Control Method: None
Energy			Engine – 300 Hp	Emission Limit for PM –
Center, LLC				0.15 G/BHP-h; VOC –
				0.75 lb/h.
				Meets limits of the NSPS
				IIII and good combustion
				practices.
Harrison	4/3/2019	OH-0377	Emergency Fire	Control Method: None
Power			Pump – 320 Hp	Emission Limit for PM –
				0.11 lb/hr; VOC – 2.12
				lb/hr.

Table 5.1-Summary of RBLC Database Review

				Meets limits of the NSPS IIII and good combustion practices.	
Fiber	4/12/19	SC-0182	Emergency Fire	Control Method: None	
Industries			Pumps	Meets limits of the NSPS	
				IIII, comply with NESHAP	
				ZZZZ, use ultra low sulfur	
				diesel fuel and good	
				combustion practices.	

5.1.1 Control Technology Options

A review of the RBLC database for diesel fired emergency fire pump engines revealed that the listed sources did not use any post-combustion PM or VOC control device to meet BACT standards.

Good Combustion Practices: Good combustion practices include operating the system based on the design and recommendations provided by the manufacturer and by performing periodic maintenance checks. A well operated system utilizing good combustion practices is the most prevalent and cost effective measure for reducing emissions from the proposed fire engines.

Manufacturer's Specifications: The manufacturer certifies that the engine is NSPS Tier 3 certified and meets NSPS 40 CFR Part 60 Subpart IIII. The review of the RBLC show that this satisfies BACT for similar engines.

Proposed BACT

Proposed good combustion practices to be implemented by Bunge and the use of a certified NSPS engine will maintain PM and VOC emissions below the emission limit. Good combustion practices and an engine certified to meet NSPS 40 CFR 60 Subpart IIII will be considered BACT for PM and VOCs for the new fire pump.

6.0 RANK REMAINING CONTROL TECHNIQUES BY EFFECTIVENESS

This section evaluates the relative effectiveness of the options deemed technically feasible in reducing the impact of emissions, regardless of cost. Table 6.1 below lists the control technologies in descending order of efficiency.

6.1 Emergency Fire Pump engine

Pollutant	Available Control Alternatives	Selected BACT option?	Negative Impacts	Emission Rate	Average Cost Effectiveness (\$/ton)
РМ	Good Combustion Practices; Meets NSPS Subpart IIII	Yes	N/A	0.1 g/kW-hr	N/A
P M 10		Yes	N/A		N/A
PM _{2.5}		Yes	N/A		N/A
NOx + HC	Good Combustion Practices; Meets NSPS Subpart IIII	Yes	N/A	3.42 g/kW- hr	N/A

Table 6.1 Ranking of Control technologies

7.0 CONCLUSIONS

This BACT Analysis is developed in support of a PSD permit application for emissions of particulate matter and VOCs from Bunge North America's Decatur, Alabama soybean processing plant. This BACT analysis indicates that the only particulate matter control technologies that are both technically feasible and cost effective are as follows:

• Particulate matter and volatile organic compound emissions from the emergency fire pump engine will be minimized through the use of good combustion practices and the use of an engine that is certified to meet 40 CFR Part 60 Subpart IIII.

References

- 1. EPA. (1995). AP-42. Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Air Sources. Appendix B. Research Triangle Park, NC: US EPA.
- 2. RACT / BACT / LAER Clearinghouse Clean Air Technology Center.

Sanderson, Skyler

From: Sent: To: Subject: Christa Andrew <Christa.Andrew@bunge.com> Monday, June 10, 2019 12:46 PM Sanderson, Skyler FW: Additional Information - PSD application

Skyler:

Bunge believes that the 0.19 gal/ton BACT limit is appropriate given that the range of BACT limits in the RBLC corresponds to the same BACT control technology employed by the facility. Additionally, the BACT limit has to be achievable by the facility. The solvent loss data provided as part of the application shows that the 0.19 gal/ton solvent loss limit is most appropriate, even though the facility is currently struggling to meet the current limit. Bunge is committed to operating its facility as efficiently as possible which includes minimizing hexane loss, but the past year of operating history indicates the new extractor operates differently than the previous extractor (higher hexane carryover to the desolventizer) which can result in somewhat higher hexane loss.

Christa Andrew Environmental Specialist Bunge North America 1391 Timberlake Manor Parkway Chesterfield, MO 63017 O: 314-292-2707 C: 314-603-7986

From: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Sent: Friday, June 7, 2019 4:06 PM To: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Cc: Jason W. Davis <<u>JasonW.Davis@bunge.com</u>> Subject: RE: Additional Information

CAUTION: This email originated from outside of Bunge. Do not click links or open attachments unless you recognize the sender.

Christa,

We will proceed with the boiler analysis as is. Also, I have received an additional comment concerning the extractor VOC limit of 0.19 lb/ton (12-month rolling). I understand that this is the current limit and comes from a consent decree. However, in the RBLC review such limits range from 0.14 lb/ton to 0.19 lb/ton. Sometimes when a range of limits exists in the database, we are asked why the lowest was not selected for BACT. Could you provide an explanation (extractor design, inherent process constraints, etc.) for why 0.19 lb/ton is appropriate BACT for this unit as opposed to a lower limit within that range?

Please let me know if you would like to discuss or have any questions.

Thanks,

Environmental Engineering Specialist, Senior Air Division, Energy Branch Alabama Department of Environmental Management Mail: PO Box 301463, Montgomery, AL 36130-1463 Phone: (334) 270-5647 Email: <u>skyler.sanderson@adem.alabama.gov</u>

From: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Sent: Friday, June 7, 2019 8:07 AM To: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Cc: Jason W. Davis <<u>JasonW.Davis@bunge.com</u>> Subject: RE: Additional Information

Skyler:

My comments are attached. One comment on X039 that I didn't include is that I think you meant to add a visible emissions monitoring to EX-2 (EX-1 is VOCs only) as you have the Recordkeeping and Reporting Requirements in there.

Also, we believe that the BACT analysis for the boiler is sufficient. I have reviewed other permits and the RBLC and Good Combustion Practices and using natural gas are consistent practices for VOC and PM control. I do not believe that USEPA will require any further analysis on them as the emissions of each are very low. Some BACT analysis don't even address them, just NOx which isn't applicable here. So I've elected to leave the BACT analyses as they are.

Please let me know if you have any questions. I will only be available today until 9:00 via e-mail or my cell phone but will be back in the office on Monday.

Thanks,

Christa Andrew Environmental Specialist Bunge North America 1391 Timberlake Manor Parkway Chesterfield, MO 63017 O: 314-292-2707 C: 314-603-7986

"Freedom is never more than one generation away from extinction. We didn't pass it to our children in the bloodstream. It must be fought for, protected, and handed on for them to do the same." Ronald Reagan

From: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Sent: Tuesday, June 4, 2019 1:54 PM To: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Subject: RE: Additional Information

CAUTION: This email originated from outside of Bunge. Do not click links or open attachments unless you recognize the sender.

Christa,

Attached are first drafts of the PSD analysis and proposed permits. Please note that these are preliminary drafts and are subject to change upon review from my supervisor. For the sake of timeliness, go ahead and look these over and get back to me with any comments or questions you may have. Once I get the drafts back and resolve any issues from my supervisor, I will send you updated drafts for final review before we send everything to public notice. At that time I will also send you a fee letter and invoice and let you know the start date of the public comment period.

Thanks,

Skyler Sanderson

Environmental Engineering Specialist, Senior Air Division, Energy Branch Alabama Department of Environmental Management Mail: PO Box 301463, Montgomery, AL 36130-1463 Phone: (334) 270-5647 Email: <u>skyler.sanderson@adem.alabama.gov</u>

From: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Sent: Friday, May 24, 2019 10:54 AM To: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Subject: RE: Additional Information

CAUTION: This email originated from outside of Bunge. Do not click links or open attachments unless you recognize the sender.

Hi Christa, yes, that is what I needed. I apologize for not confirming that earlier. I am about done drafting the permits and will email you drafts when finished.

Thanks,

Skyler Sanderson

Environmental Engineering Specialist, Senior Air Division, Energy Branch Alabama Department of Environmental Management Mail: PO Box 301463, Montgomery, AL 36130-1463 Phone: (334) 270-5647 Email: <u>skyler.sanderson@adem.alabama.gov</u>

From: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Sent: Friday, May 24, 2019 10:51 AM To: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Subject: RE: Additional Information

Hi Skyler:

Is that what you needed?

Thanks,

Christa Andrew Environmental Specialist Bunge North America 1391 Timberlake Manor Parkway Chesterfield, MO 63017 O: 314-292-2707 C: 314-603-7986

"Freedom is never more than one generation away from extinction. We didn't pass it to our children in the bloodstream. It must be fought for, protected, and handed on for them to do the same." Ronald Reagan

From: Christa Andrew Sent: Monday, May 20, 2019 3:42 PM To: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Subject: RE: Additional Information

Skyler:

The revisions you requested can be found in Section 2.9 of the Permit Summary and in the attached BACT analysis for the Fire Pump engine. Please let me know if you need anything else.

Thanks,

Christa Andrew Environmental Specialist Bunge North America 1391 Timberlake Manor Parkway Chesterfield, MO 63017 O: 314-292-2707 C: 314-603-7986

"Freedom is never more than one generation away from extinction. We didn't pass it to our children in the bloodstream. It must be fought for, protected, and handed on for them to do the same." Ronald Reagan

From: Sanderson, Skyler <<u>skyler.sanderson@adem.alabama.gov</u>> Sent: Wednesday, May 8, 2019 11:00 AM To: Christa Andrew <<u>Christa.Andrew@bunge.com</u>> Subject: Additional Information

CAUTION: This email originated from outside of Bunge. Do not click links or open attachments unless you recognize the sender.

Christa,

Per our phone conversation, I need a bit more information to complete the PSD review. 1) I need an Additional Impact Analysis that addresses any anticipated effects on nearby commercial growth, soil and vegetation, and visibility. You can find a description of this requirement in ADEM Admin. Code r. 335-3-14-.04(14). 2) I need a BACT analysis for the fire pump engine. You already stated it will be compliant with Tier 3 and NSPS IIII requirements, which would be considered BACT for such an engine, but please state that that is what you've proposed as BACT.

Please let me know if you have any questions about this. I will be out of the office next Monday and Tuesday and in and out this Friday, but otherwise I should be available.

Thanks,

Skyler Sanderson

Environmental Engineering Specialist, Senior Air Division, Energy Branch Alabama Department of Environmental Management Mail: PO Box 301463, Montgomery, AL 36130-1463 Phone: (334) 270-5647 Email: <u>skyler.sanderson@adem.alabama.gov</u>

This message is intended only for the named recipient and may contain confidential, proprietary or legally privileged information. No confidentiality or privilege is waived or lost by any misdirected transmission.

If you received this message in error, please notify us immediately by telephone at +1 314 292-2000 and immediately delete this message from your system.

If you are not the intended recipient, you must not use, disclose, distribute or copy any part of this message.

This message is intended only for the named recipient and may contain confidential, proprietary or legally privileged information. No confidentiality or privilege is waived or lost by any misdirected transmission.

If you received this message in error, please notify us immediately by telephone at +1 314 292-2000 and immediately delete this message from your system.

If you are not the intended recipient, you must not use, disclose, distribute or copy any part of this message.